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Machine learning reveals limited contribution of
trans-only encoded variants to the HLA-DQ
immunopeptidome
Jonas Birkelund Nilsson 1,6, Saghar Kaabinejadian 2,3,6, Hooman Yari 3, Bjoern Peters4, Carolina Barra 1,

Loren Gragert 5, William Hildebrand3 & Morten Nielsen 1✉

Human leukocyte antigen (HLA) class II antigen presentation is key for controlling and

triggering T cell immune responses. HLA-DQ molecules, which are believed to play a major

role in autoimmune diseases, are heterodimers that can be formed as both cis and trans

variants depending on whether the α- and β-chains are encoded on the same (cis) or opposite

(trans) chromosomes. So far, limited progress has been made for predicting HLA-DQ antigen

presentation. In addition, the contribution of trans-only variants (i.e. variants not observed in

the population as cis) in shaping the HLA-DQ immunopeptidome remains largely unresolved.

Here, we seek to address these issues by integrating state-of-the-art immunoinformatics data

mining models with large volumes of high-quality HLA-DQ specific mass spectrometry

immunopeptidomics data. The analysis demonstrates highly improved predictive power and

molecular coverage for models trained including these novel HLA-DQ data. More

importantly, investigating the role of trans-only HLA-DQ variants reveals a limited to no

contribution to the overall HLA-DQ immunopeptidome. In conclusion, this study furthers

our understanding of HLA-DQ specificities and casts light on the relative role of cis versus

trans-only HLA-DQ variants in the HLA class II antigen presentation space. The developed

method, NetMHCIIpan-4.2, is available at https://services.healthtech.dtu.dk/services/

NetMHCIIpan-4.2.
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Major histocompatibility complex class II molecules
(MHC class II) are expressed on the surface of profes-
sional antigen presenting cells such as B cells, dendritic

cells (DCs), and monocytes/macrophages1. These molecules,
which are designed to bind and present fragments of the exo-
genous proteins to T-helper cells, are heterodimers consisting of
α- and β-chains which together form the peptide-binding cleft.

In humans, HLA (human leukocyte antigen) class II is encoded
by three different loci (HLA-DR, -DQ, and -DP). These HLA genes
have numerous allelic variants with polymorphisms that are mainly
clustered around the peptide-binding groove, resulting in a wide
range of distinct peptide-binding specificities2. In many auto-
immune diseases, HLA class II genes are major genetic suscept-
ibility factors1,3 that play a central role in the pathogenesis of these
conditions by presenting antigenic peptides to CD4+ T cells.

Several studies have explored the importance of HLA-DR and
DQ at haplotype and genotype levels among type 1 diabetes
(T1D) patients3. These genetic and functional studies have indi-
cated that both HLA-DR and DQ alleles are associated with the
risk of T1D3,4. In addition, the associated DR-DQ haplotypes
demonstrate a risk hierarchy, ranging from highly predisposing to
highly protective4. Interestingly, more recently it was demon-
strated that HLA-DR, which generally plays the primary role in
autoimmune diseases, has an important but secondary role to the
HLA-DQ locus in T1D5.

Autoimmune disorders like T1D in addition to other condi-
tions such as Celiac disease, where a direct and exceptionally
strong association for HLA-DQ has been established6, thus
necessitate a more thorough and systematic characterization of
antigen presentation by HLA-DQ molecules to enable study of
their function. Even though the field is moving forward rapidly7,
so far peptide binding motifs of only a limited number of HLA-
DQ molecules have been exhaustively studied8–10. One reason for
this is that HLA-DQ molecules are more complex to study
experimentally. For instance, because of the monomorphic nature
of the α-chain in HLA-DR, the polymorphic variations are only
provided by the β-chain11. In HLA-DQ, both α- and β-chains
contribute to polymorphic variations. However, evidence suggests
that not every α- and β-chain pairing will result in a stable het-
erodimer due to key structural requirements on the α and β
dimerization interface11,12. For example, DQA1*01 has only been
detected to form stable heterodimers with DQB1*05 and 06
alleles. Likewise, the DQA1*02, 03, 04, 05, and 06 alleles form
stable heterodimers only with the DQB1*02, 03, and 0412–14.

In addition, studying the function of HLA-DQ alleles is chal-
lenging because of the extensive linkage disequilibrium between
HLA-DR and HLA-DQ within the HLA class II region, making it
difficult to differentiate the role of individual HLA-DQ alleles
from the associated HLA-DR molecules3,11.

Finally, unique cis and trans encoded DQ molecules can occur
where α- and β-chains that pair to form the heterodimer are
encoded by the same (cis) or opposite (trans) chromosomes,
making the study of these molecules even further complicated.
While the majority of the current knowledge on HLA-DQ mole-
cules comes from cis encoded variants, the surface expression and
function of a small number of trans encoded DQ variants have been
confirmed11,15. Here, it is important to emphasize that these
functional trans molecules have also been observed to be functional
as the corresponding cis-encoded variant. Therefore, it is generally
believed that alleles of DQα- and DQβ-chains pair up primarily in
cis rather than in trans variants16,17. Hereafter, we refer to all stable
DQα- and β-chain combinations mentioned above as cis, and the
rest which includes any combination that has not been detected or
reported as cis encoded will be referred to as “trans-only”.

In recent years, the information related to cis-encoded HLA-
DQ variants has been greatly expanded due to large volumes of

HLA sequence data becoming available13. Here, the assumption is
that all observed DQ haplotypes, by natural selection, are able to
form stable and functional cis and trans-encoded molecules.
However, the role of trans-only encoded variants in antigen
presentation and their contribution in shaping and com-
plementing the HLA-DQ immunopeptidome has remained lar-
gely unresolved.

Given the critical role of HLA class II antigen presentation in
the control and shaping of the adaptive immune response, great
efforts have been dedicated to the development of prediction
models capable of predicting this event (reviewed in Nielsen et al.
202018). Current state-of-the-art prediction methods include
NetMHCIIpan19, a pan-specific method allowing for prediction
of antigen presentation for any HLA class II molecule with
known protein sequence. For HLA-DQ and DP heterodimers,
this means that sequence information about both the α- and β-
chains is required in order to make predictions.

Originally, in vitro peptide-HLA binding affinity (BA) assays
have been used to generate data to characterize the motifs of HLA
class II molecules2, and development of different machine-
learning prediction models to identify the rules of peptide–HLA
binding20,21. However, experimental results indicate binding
affinity (BA) to be a relatively weak correlate of antigen proces-
sing and presentation by HLA molecules22. In addition, multiple
studies have demonstrated that the performance of the HLA-class
II peptide-binding prediction models improve significantly when
trained with immunopeptidome data acquired by liquid chro-
matography coupled with mass spectrometry (LC-MS/
MS)2,20,23,24. Generally, in an HLA class II immunopeptidome
eluted ligand (EL) assay, HLA molecules are affinity purified from
lysed antigen presenting cells (APCs) using HLA specific
monoclonal antibodies. The HLA molecules are next denatured
and peptide ligands are isolated and sequenced via LC-MS/
MS25,26. The result of such an assay is a list of peptide sequences
restricted to at least one of the HLA class II molecules expressed
by the interrogated cell line. EL data has a major advantage over
BA data as they contain signals from different steps of HLA class
II antigen presentation, such as antigen digestion, HLA loading of
ligands, and transport to the cell surface27–29.

HLA class II binding predictions have been widely used to
identify epitope candidates in infectious, cancer and autoimmune
diseases30. The majority of prediction algorithms for HLA class II
have so far been focused on HLA-DR molecules due to the large
data availability for those. However, in the context of HLA-DQ,
both pairing of synthetic α- and β-chains in order to perform
binding affinity experiments, and generation of large EL datasets
have proven to be challenging. The latter mostly due to lack of
application of HLA-DQ specific antibodies in large scale MS-
immunopeptidomics experiments resulting in limited yield in the
HLA-DQ purification process.

In recent years, proteomics and peptide analysis by mass
spectrometry (MS) has made huge progress, due to cutting edge
technology and increased sensitivity of the instruments along
with advanced software platforms and algorithms that support
peptide identification and quantification. These advancements,
along with the use of a highly specific HLA-DQ antibody, have
enabled us to characterize, in a single assay, thousands of peptides
which naturally bind the HLA-DQ molecules and generate stable
peptide-HLA complexes that are transported to the cell surface to
be presented to immune cells. Here, we have applied this setup to
generate a large set of peptides presented by a group of HLA-DQ
molecules frequent in the worldwide population from a panel of
homozygous B lymphoblastoid cell lines. These large data sets
were directly submitted to bioinformatic motif identification and
machine learning pipelines to define the motifs and uncover the
rules governing the processing and presentation of peptides in a
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biological context. Further, this study allowed us to move towards
resolving the challenge of cis versus trans formation of functional
HLA-DQ heterodimers and determine the role of trans-only
variants in shaping the HLA-DQ immunopeptidome. The
extensive insight into the peptide-binding characteristics of the
investigated HLA-DQ molecules provided by this study will
facilitate better understanding of HLA-DQ disease association
and discovery of novel therapeutic targets.

Results
For the study, immunopeptidome data for 14 different HLA-DQ
molecules was obtained from 16 homozygous B Lymphoblastoid
Cell Lines (BLCLs) using LC-MS/MS. By using a DQ-specific
antibody during the affinity purification, we were able to obtain a
large dataset highly enriched in DQ peptide ligands. An overview
of the cell lines’ peptide counts, DQ HLA types and peptide
length distributions is shown in Fig. 1. Overall, the data contains a
total of 39,334 peptide ligands, with 14- and 15-mers being most
prevalent. After enriching the novel data with random natural
peptides assigned as negatives (see materials and methods), we
combined it with the data used to train the NetMHCIIpan-4.1
prediction method, yielding a large dataset of eluted HLA class II
ligands. From this, we set out to address three essential issues
related to HLA-DQ, namely (i) the relatively low predictive power
of current prediction models for DQ molecules, (ii) the con-
tribution of trans-only encoded DQ variants to the DQ

immunopeptidome, and (iii) the overall coverage of the DQ
specificity space of the current experimental data and developed
in-silico prediction models.

Impact of novel DQ data on predictive performance. To
investigate the impact on the predictive power by integration of
the novel DQ data, we employed the NNAlign_MA algorithm31

which is a highly powerful machine learning method for decon-
voluting MS immunopeptidomics data. Two peptide antigen
presentation prediction models were trained: one including the
novel DQ affinity purified data (termed w_Saghar_DQ), and for
direct comparison of the impact of the novel data one without
(termed wo_Saghar_DQ). The models were then evaluated using
cross-validation on a per-molecule basis within four different
subsets of all the HLA class II molecules in the training data.
These subsets are non-DQ molecules (NotDQ), all DQ molecules
(DQ), DQ molecules present in the novel data (DQ_Saghar) and
DQ molecules not present in the novel data (DQ_NotSaghar).

Figure 2 displays the result of this experiment and demon-
strates that incorporation of the novel DQ data resulted in a
significant performance gain for DQ as expected (p= 0.011 for all
metrics, n= 44 molecules, one-tailed binomial test without ties).
However, from these results it is apparent that the performance
for DQ remains lower compared to that of non-DQ molecules.
We assumed this to be a result of the DQ performance being
calculated from a mix of both the novel data and the older

Fig. 1 Overview of the novel immunopeptidomics data. Each row corresponds to a dataset from a given DQ-homozygous cell line. Left panel: Bar plot of
overall peptide counts. The numbers on the left correspond to the cell line IDs. Middle panel: DQ HLA types of the cell lines. Right panel: Peptide length
distributions.
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NetMHCIIpan-4.1 training data. To demonstrate this, we
evaluated the performance on the DQ_Saghar molecules limited
to the novel data only. The result of this is shown in Fig. 3 and
demonstrates that when focusing only on the novel data, the
performance of DQ reaches a level comparable to that of non-
DQ, with a significant gain in terms of PPV (t= 1.19, p= 0.24 for
AUC, t= 0.21, p= 0.83 for AUC 0.1 and t= 2.69, p= 0.009 for
PPV, n= 14 DQ molecules and n= 70 non-DQ molecules, two-
sided t-tests). This result is important as it suggests that the low
performance earlier reported for DQ is at least in part imposed by
a low quality and quantity of the earlier DQ data.

We next looked at the differences in peptides assigned to HLA-
DQ molecules between the two methods across all samples. Here,
we considered all peptides which were assigned to DQ with
percentile rank <20 (i.e. as non-trash) in at least one of the
methods23. Overall, the two methods share a high degree of
overlap in the peptides assigned to DQ (60,959 annotations were
shared by both models, 9309 annotations were unique for the

method trained including the novel data and 4316 unique for the
method trained without). This increased DQ coverage for the
model trained including the novel data predominantly comes
from peptides assigned to DR (and to some degree trash and DP)
by the model trained without the novel data (see Supplementary
Table 1 for an overview of the peptide migrations). This suggests
that at least part of the improved predictive performance of the
novel model originates from an improved motif deconvolution.

To further quantify this, we show the mean consistency value
per HLA molecule in the four molecule subsets in Supplementary
Fig. 1. In short, position-specific scoring matrices were con-
structed for each molecule in a given cell line from the predicted
binding cores in the individual positive peptides, and the
consistency was quantified by the correlation of such matrices
for the same molecule between different cell line data sets (for
details refer to materials and methods). Based on this analysis, an
overall improved consistency is observed for the model trained
with the novel DQ data (p < 0.02 in all cases except for the

Fig. 2 AUC, AUC 0.1 and PPV predictive performance for the models trained with (w_Saghar_DQ) and without (wo_Saghar_DQ) the novel data. Each
point is the performance metric for a unique HLA class II molecule. For details on the performance metrics refer to materials and methods. The columns
correspond to four different subsets of HLA molecules, namely all non-HLA-DQ molecules (NotDQ, n= 70), all DQ molecules (DQ, n= 44), DQ
molecules in the novel data set (DQ_Saghar, n= 14), and DQ molecules not present in the novel data (DQ_NotSaghar, n= 30). Each boxplot shows the
median inside the interquartile range (IQR) between the upper and lower quartiles, with whiskers extending to at most 1.5 times the IQR.
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DQ_NotSaghar subset, one-tailed binomial test without ties). The
consistency analysis for an example molecule contained in the
novel data (DQA1*03:01-DQB1*03:02) is shown in Supplemen-
tary Fig. 2, illustrating that in most cases the improved motif
consistency is caused by an increased peptide count across
samples (see Supplementary Tables 2 and 3).

Furthermore, HLA-DQ binding motifs obtained by motif
deconvolution of the novel MS data were visualized, along with
sequence motifs based on predicted binders, in Supplementary
Fig. 3. Here, the logos obtained by motif deconvolution are in
most cases very similar when comparing the models trained with
and without the novel data. However, the predicted sequence
logos based on top scoring random natural peptides indicate that
the model trained without the novel DQ data has failed to fully
learn the correct binding motifs of all the novel DQ molecules,
especially with respect to the P1 amino acid preferences. To
quantify these results, correlations between the deconvoluted and
predicted logos for each method were calculated (Supplementary
Fig. 4). This analysis showed significantly higher correlation for
the method including the novel data (p= 0.011, n= 16 logo pairs,
one-tailed binomial test without ties), indicating a highly
consistent correspondence between the identified and predicted
binding motifs.

Together, these observations demonstrate that incorporating
the novel HLA-DQ data has allowed for an enriched identifica-
tion of HLA-DQ peptide ligands, rescuing peptides otherwise
assigned to alternative DR/DP molecules, resulting in improved
motif deconvolution consistency and improved predictive power.

The above results were complemented by a comparison to a
model trained including the novel data using peptide context
encoding. In short, context encoding refers to a scenario where
information from the regions flanking the peptide is extracted
from the source protein sequence and included as additional
input to the machine learning model. In line with what has been
demonstrated earlier2,27,31, the results of this comparison
(Supplementary Fig. 5) demonstrated that the model trained
including context significantly outperformed the model trained
without context in all performance metrics and data subsets (the
only exception being the DQ_NotSaghar subset). However, given
that the main focus of the remaining part of the manuscript is to
investigate motif deconvolution and the role of cis versus trans-
only DQ α- and β-chain pairing in this context, we focus on the
simpler model trained without context information from here on.

Distribution of annotations to cis vs trans-only DQ molecules.
In DQ-heterozygous cell lines, four possible α–β chain pairings

can in principle be observed. For so-called cis-heterodimers, the
α- and β-chain are expressed on the same chromosome and can
thus be observed in haplotype sequencing. DQ molecules formed
by pairing α- and β-chains between chromosomes are called
trans-heterodimers. Some α–β pairings have not been observed as
cis encoded (based on large HLA-haplotype sequencing popula-
tion studies) and are thus here referred to as “trans-only” com-
binations. To assess the relative contribution of cis and trans-only
DQ heterodimers in shaping the immunopeptidome, we inves-
tigated the distribution of peptides assigned to cis versus trans-
only encoded DQ molecules across DQ-heterozygous datasets for
the two models. Here, only datasets with at least 100 DQ-
annotated peptides excluding trash in both methods were con-
sidered (for an overview of the datasets used in this analysis, refer
to Supplementary Table 4). The proportion of DQ-annotated
peptides assigned to each molecule was then calculated for each
dataset containing that molecule. Finally, the mean per-dataset
peptide fraction was reported for each DQ molecule, and the
distribution of these means for molecules across four categories
were then investigated. These categories are all cis variants, cis-SA
(cis variants part of the single-allelic DQ training data), cis-MA
(cis variants part of the multi-allelic DQ training data), and trans-
only variants.

The result of this analysis is shown in Fig. 4a for the two
models and indicates that for the method including the novel
data, trans-only molecules consistently cover a small proportion
of the DQ annotations in each cell line. On the other hand, the cis
molecules have generally high contribution, with the cis-SA
molecules having the largest contribution. However, the cis-MA
molecules were also found to have significantly larger contribu-
tion compared to the trans-only molecules in the model including
the novel data (t= 3.07, p= 0.005, n= 18 cis-MA molecules and
n= 12 trans-only molecules, two-sided t-test). Similar results
were found when extending the cis-SA category to include cis-
MA molecules with the same pseudo-sequence as a cis-SA
molecule (Supplementary Fig. 6). Further, an overall higher
contribution of trans-only molecules to the DQ peptide
annotations was observed for the model trained without the
novel data (t= 2.1, p= 0.03, n= 12 molecules, paired one-sided
t-test). These results are striking, as they indicate that the motif
deconvolution in the model including the novel data is not solely
driven by the cis-SA molecules, but rather by an overall
preference for cis-encoded variants compared to trans-only
variants (see Supplementary Figs. 7 and 8).

To further investigate this, the DQ motif deconvolution of the
two models for the Racle__TIL1 dataset is shown in Fig. 4b. Here,
the model trained without the novel data assigns a large

Fig. 3 Performance of the model trained including the novel data, evaluated on both the novel data alone restricted to DQ, as well as on non-DQ
including the full dataset. Each point is the performance metric for an HLA class II molecule. Each boxplot shows the median inside the interquartile range
(IQR) between the upper and lower quartiles, with whiskers extending to at most 1.5 times the IQR.
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proportion of peptides (170 out of 425) to HLA-DQA1*01:01-
DQB1*03:01, which is a trans-only molecule known to not form a
stable heterodimer12,13. On the other hand, in the model trained
with the novel data, almost no peptides are assigned to this
molecule (20 out of 459). Instead, the peptides are assigned to the
cis molecule HLA-DQA1*03:03-DQB1*03:01. Note, also, that for
both models a very minor proportion of peptides are assigned to
HLA-DQA1*03:03-DQB1*05:01, another trans-only heterodimer
known to be unstable12,13.

Overall, these results demonstrate that the model including the
novel DQ data allows for proper motif deconvolution with
limited assignment of peptides to trans-only HLA-DQ molecules.
Further, the very low proportion of peptides assigned to trans-
only molecules, combined with the overall increased HLA-DQ
peptide volume and motif consistency of the model trained
including the novel data, strongly suggests that trans-only

HLA-DQ molecules have limited to no contribution to the total
HLA-DQ immunopeptidome. However, it is important to
underline that the predictions are highly influenced by the SA
training data (illustrated by the dominant contribution of the cis-
SA category). As such, we cannot rule out completely that the low
number of annotations towards trans-only heterodimers may be
impacted by the lack of SA training data for these molecules or a
lower sequence similarity to the cis-SA molecules compared to
that of the cis-MA molecules.

Difference in peptide length distributions of DR and DQ.
When we compared the length distribution of DQ peptide ligands
in the novel data with HLA-DR restricted peptides that
were purified from the same set of BLCLs23, it was revealed that
the DQ ligands were in general shorter than the DR ligands

a

b

Fig. 4 Contribution of cis and trans-only DQ variants in DQ-heterozygous datasets. a Peptide-count contribution of cis and trans-only molecules in the
methods with (w_Saghar_DQ) and without (wo_Saghar_DQ) the novel data. Each point shows the mean per-dataset peptide fraction for a given DQ
molecule. For each method, trans-only molecules are shown in one boxplot (n= 12), while cis molecules are shown in three categories, namely all cis
molecules (Cis–All, n= 29), cis molecules found in the DQ-SA training data (Cis–SA, n= 11), and cis molecules only found in the DQ-MA training data
(Cis–MA, n= 18). Each boxplot shows the median inside the IQR between the upper and lower quartiles, with whiskers extending to at most 1.5 times the
IQR. b DQ motif deconvolution for the Racle__TIL1 dataset. The rows correspond to the methods trained with (wSag) and without (woSag) the novel data,
respectively. Peptide counts (excluding trash peptides) are displayed in parenthesis in the logo plot titles. Trans-only molecules are highlighted in red frames.
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(see Supplementary Fig. 9). By comparing the per-molecule
median peptide lengths for the two loci, a significant difference
was found (t= 2.4, p < 0.03, n= 17 DR molecules and n= 14 DQ
molecules, two-sided t-test), with DR and DQ having average
peptide length medians of 15.41 and 14.93, respectively. This
analysis indicates that HLA-DQ molecules generally bind shorter
peptides compared to HLA-DR. Moreover, in contrast to HLA-
DQ alleles that are more consistent in their peptide length pre-
ferences, various HLA-DR molecules show subtle differences in
their length preferences23. For example, HLA-DR*07:01, 09:01
and 14:01 show a preference for shorter peptides (14 mers) while
the majority of DR alleles follow the common class II length
preference (15 mer).

Coverage of DQ. Next, we wanted to assess the number of DQ
molecules present in the cross-validation predictions by each
model which were properly covered (i.e. had a large number of
peptides assigned during training), and hence where the models
are expected to achieve accurate predictive power. The peptide
count for a given DQ molecule was estimated as the accumulated
sum of peptides from each cell line containing that molecule
(excluding trash peptides). Here, only peptides annotated to DQ
molecules in a given cell line corresponding to at least 5% of the
total number of DQ peptides were included in its count (this was
done to avoid including accumulation of low count noise). A
given DQ molecule was then said to be covered if the summed
peptide count over all cell lines was at least 100. This analysis
resulted in 24 DQ molecules being covered by the model trained
including the novel data, and 23 being covered when excluding
these data. None of the 24 DQ molecules covered by the model
including the novel data were found to be trans-only, whereas the
model without the novel data covered two trans-only DQ mole-
cules, namely HLA-DQA1*01:01-DQB1*03:01 (as described
earlier) and HLA-DQA1*01:03-DQB1*03:02. Of the remaining
21 molecules, 20 were included in the molecules covered by the
model trained with the novel data.

Given the different sets of molecules covered by the two
methods, we wanted to estimate each method’s coverage when
considering the entire DQ specificity space. As such, for each of
the two methods, we investigated the proportion of 154 prevalent
DQ molecules that had a distance of at most 0.025 to a molecule
covered by the model (this set of molecules is here referred to as
‘extended coverage’). For details on how this distance was
determined and how the list of prevalent DQ molecules was
defined refer to materials and methods. The threshold of 0.025
was chosen based on the distance at which the model trained
without the novel data could reach optimal performance on
molecules not part of the method’s DQ-SA training data (see
Supplementary Fig. 10). Note, also, that 0.025 is a conservative
distance threshold, and that we expect the model to maintain
accuracy also for molecules falling beyond this value32.

From this analysis, a significant gain in extended coverage was
found (χ2= 4.73, p < 0.03, n= 154 molecules, chi-squared test),
with the model including the novel data covering 94 out of 154
molecules, while the model without the novel data only covered
75 out of 154 molecules (see Supplementary Tables 5 and 6 for a
list of covered and non-covered DQ molecules for the model
trained including the novel data). When comparing the covered
and non-covered molecules for the method including the novel
data, the non-covered group had significantly lower worldwide
haplotype frequency data as obtained from Allelefrequencies.net
(for detail on how these frequencies were obtained refer to
material and methods) compared to the covered group (average
frequencies for the two groups were 0.0134 and 0.0025, t= 2.69,

p= 0.0083, n= 94 covered molecules and n= 60 non-covered
molecules, two-sided student t-test). These results suggest that the
non-covered DQ molecules are of limited importance seen from a
population coverage perspective.

For visualizing the coverage of the DQ space, a specificity tree
was constructed. Here, we used the list of 154 prevalent HLA-DQ
molecules as the starting point. This list was first reduced to a set
of 61 molecules with unique specificities (for details see methods)
which were included in the subsequent analysis. Next, a specificity
tree was constructed covering the 61 DQ molecules applying the
MHCCluster method33. In short, the MHCCluster method
estimates the similarity between two MHC molecules using the
correlation between predicted binding values for a large set of
random natural peptides. Figure 5 shows the resulting specificity
tree along with predicted binding motifs for the 14 novel DQ
molecules. The tree displays wide coverage of the DQ space, as all
the novel molecules are spread more or less uniformly across the
different branches of the tree, and all branches are covered by one
or more DQ molecules in close distance to the DQ molecules
covered by the training data. Moreover, a few subclusters of non-
covered molecules were observed (highlighted by motifs in red
frames), which were found to correspond almost one-to-one with
the non-covered clusters in a phylogenetic tree of the DQ pseudo-
sequences (see Supplementary Fig. 11).

NetMHCIIpan-4.2. The model developed here including the
novel DQ immunopeptidome data is made publicly available at
https://services.healthtech.dtu.dk/services/NetMHCIIpan-4.2.
The method allows for prediction of HLA antigen presentation to
all HLA-DQ molecules, and prediction can be made with or
without context encoding.

Benchmark on independent DQ data. As a final showcase of our
method’s motif deconvolution power for DQ, we benchmarked
our method against MixMHC2pred-2.0, another HLA class II
predictor which was recently published7. The benchmark data
was taken from Marcu et al.34 and consists of eluted ligand data
from 15 donor samples, which was enriched with random
negative peptides (for more details on the benchmark data refer
to materials and methods and see Supplementary Table 7 for an
overview of the samples used).

We first evaluated the performance of the two methods without
including peptide context information. Figure 6a shows this
performance per sample on the entire data, indicating that our
method significantly outperforms MixMHC2pred-2.0 on the
independent dataset in all three metrics (p < 0.02 in all metrics,
n= 15 samples, one-tailed binomial test without ties). Further-
more, Fig. 6b shows the performance per sample restricted to the
union of peptides annotated towards DQ by either method, once
again showing a significant performance gain in favor of
NetMHCIIpan-4.2 (p < 0.005 in all metrics, n= 15 samples,
one-tailed binomial test without ties). Repeating the benchmark
including peptide context encoding also resulted in our method
significantly outperforming MixMHC2pred-2.0 (p < 0.005 in all
metrics for the entire data and p= 3·10−5 in all metrics for the
union of DQ-annotated peptides, n= 15 samples, one-tailed
binomial tests without ties (see Supplementary Fig. 12)). It should
be noted that both methods identified a large proportion of trash
peptides with percentile ranks >20 in the data (~21% and ~32%
for NetMHCIIpan-4.2 and MixMHC2pred, respectively). This
suggests a poor data quality in general, yielding substantially
lower performance than observed in our cross-validation. The
performance on this data is therefore not a true indicator of each
method’s predictive power. However, the overall performance
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gain of our method compared to MixMHC2pred-2.0 suggests that
NetMHCIIpan-4.2 is more powerful in the motif deconvolution
and identification of DQ ligands.

Investigating our method’s motif deconvolution on the
DQ-heterozygous samples, we observed that the trans-only
molecules once again had limited to no contribution (see
Supplementary Fig. 13a). In terms of observed cis variants found
in the DQ-SA or DQ-MA training data (cis-SA and cis-MA,
respectively), the cis-SA molecules had the largest contribution,
with cis-MA having significantly larger contribution than the
trans-only variants (t= 4.64, p= 0.0002, n= 12 cis-MA mole-
cules and n= 7 trans-only molecules, two-sided t-test). Similar
results were found when taking into account cis-MA molecules
with the same pseudo-sequence as a cis-SA molecule (Supple-
mentary Fig. 13b). This result contrasts with what was observed
for MixMHC2pred, where close to an equal contribution was
observed across the different molecule classes. Supplementary
Figure 13c, d show the DQ motif deconvolution for the
heterozygous samples from Marcu et al. 202134 by our method
and MixMHC2pred, respectively. These motif deconvolutions
overall reflect the results described above, with a very limited
number of peptides assigned to trans-only variants by
NetMHCIIpan-4.2, and a close to even contribution to all DQ
molecules by MixMHC2pred-2.0.

Discussion
In this work, we have demonstrated how rational data generation
combined with refined immunoinformatics data mining can
boost the performance of HLA class II antigen presentation
predictions and move towards closing the performance gap
between HLA-DR and HLA-DQ.

We generated high quality MS-immunopeptidomics data from
a series of 16 HLA-DQ homozygous cell lines covering a total of
14 frequent HLA-DQ molecules in different populations world-
wide. Using an in-house HLA-DQ specific antibody enabled
identification of MS-immunopeptidomics datasets of an, in a DQ
context, unprecedented volume with an average of 2600 unique
peptides identified in each cell line. Integrating this large volume
of data with earlier data from the development of NetMHCIIpan-
4.1 allowed us to boost the HLA-DQ antigen presentation pre-
dictive performance to a level comparable to that of HLA-DR.
Investigating the accuracy of the motif deconvolution of the two
methods trained with and without the novel data demonstrated
an overall improved motif consistency across all HLA molecules.
This observation demonstrates how integration of the novel
HLA-DQ data results in an overall improved HLA-restriction
assignment of the individual MS-HLA-peptides leading to more
accurate motif characterizations across all three HLA class II loci.
The main source of this improvement was demonstrated to be an

Fig. 5 HLA-DQ specificity tree. The tree is based on 61 DQ molecules including the 14 molecules described by the novel data. Orange molecules are
covered by the method including the novel data with at least 100 peptides, and blue molecules are within a distance 0.025 of an orange molecule. Black
molecules are non-covered (i.e. have peptide count <100 and have distance >0.025 to an orange molecule). Logos in black frames correspond to orange
molecules. Logos in red frames correspond to molecules from branches with clusters of non-covered (black) molecules. The specificity tree was calculated
from the pairwise similarities between the predictions scores for the DQ molecules for a set of 100,000 random natural 13-17mer peptides. Logos were
constructed for the top 1% highest scoring binding cores for these 100,000 peptides.
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increased volume of peptide assignment to HLA-DQ molecules
during the motif deconvolution. This resulted in improved motif
accuracy for both HLA-DQ imposed by the larger volume of
peptides, and non HLA-DQ molecules by the removal of peptides
mis-assigned as DQ restricted by the model not including the
novel DQ data.

Next, moving into the issue of cis versus trans-only HLA-DQ
α- and β-chain combinations, we demonstrated that in contrast to
the method without the novel data, the model trained including
the novel data performed the DQ motif deconvolution almost
solely using known HLA-DQ cis-variants. One particular exam-
ple here was the HLA-DQ molecule DQA1*01:01-DQB1*03:01,
which was assigned a large number of peptides in the model
trained without the novel data. However, when including the
novel data, the peptide assignment to this molecule was almost
completely depleted. This result combined with the overall
increased HLA-DQ peptide volume and motif consistency of the
model trained including the novel data, strongly suggests that
trans-only HLA-DQ α and β combinations have minimal to no
contribution to the total HLA-DQ immunopeptidome. This
finding is striking since the definition of cis and trans-only
dimerization defined here precisely follows the rules proposed
earlier for forming stable/unstable HLA-DQ heterodimers. Spe-
cifically, the rules indicate that structural constraints do not favor
dimerization of DQA1*01 with DQB1*02, 03, and 04 alleles,
resulting in their inefficient assembly, lack of stability and surface

expression and therefore loss of function12,14. These results thus
demonstrate how such rules can be learned directly from MS-
immunopeptidome data using tailored data mining methods and
rationally defined data sets, suggesting that similar types of ana-
lysis should be extended to HLA-DP to further our understanding
of cis versus trans α- and β-chain pairing.

As only cis-DQ variants are represented in the SA training
data, we cannot rule out completely that the low number of
annotations towards trans-only molecules is caused by a training
data bias. This potential bias is also illustrated by the fact that for
samples containing multiple cis-DQ molecules, our method
consistently annotated fewer peptides to cis-variants not covered
by the DQ-SA training data. Given this, it would be of great value
to generate SA datasets for additional DQ molecules currently
only covered by cis-MA data to uncover the true difference in
peptide preferences and presentation hierarchies for these var-
iants. Moreover, the independent MA dataset used to benchmark
against MixMHC2pred was very noisy and thus did not give the
best representation of each method’s predictive power. As such,
additional high-quality DQ-MA datasets are needed to further
validate and compare the predictive power of the different
methods, and to assess which method’s approach to the handling
of trans-only variants is better.

Note, that the definition of cis and trans-only HLA-DQ α- and
β-chain combinations applied in this work is contingent on the
current haplotype data available and the assumption that all

Fig. 6 Benchmark against MixMHC2pred-2.0 in terms of AUC, AUC 0.1 and PPV. Predictions were made without peptide context encoding in both
methods. Each point is the performance metric for a given sample. Each boxplot (n= 15 samples in all cases) shows the median inside the IQR between the
upper and lower quartiles, with whiskers extending to at most 1.5 times the IQR. a Performance per sample calculated on the entire data. b Performance per
sample calculated on the union of DQ-annotated peptides between the two methods.
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observed haplotype α and β combinations can pair and form cis-
variants, and all other combinations not observed as such cis-
variants are trans-only. The current data defining these categories
are limited in volume, and larger sample sizes are required for
more accurate analyses particularly for the more heterogeneous
groups and low frequency haplotypes13.

Lastly, we demonstrated how the coverage of HLA-DQ mole-
cules was largely increased by the models trained with the novel
data and illustrated this by constructing an HLA-DQ tree
showing coverage of all branches. This suggests that the current
model covers all HLA-DQ binding specificities (considering that
trans-only HLA-DQ molecules have limited to no contribution to
the overall HLA-DQ immunopeptidome).

Overall, this work has demonstrated how careful data genera-
tion using a DQ-specific antibody and affinity purification com-
bined with refined data mining and motif deconvolution can be
applied towards closing the performance gap in peptide binding
prediction between HLA-DR and HLA-DQ. Despite the large
performance gain demonstrated here, the accuracy for HLA-DQ
remains below what is observed for DR. We demonstrate that this
to a very large degree can be attributed to the generally lower
quantity and quality of ligands obtained in earlier DQ immu-
noprecipitation studies where most often DQ (and DP) data have
been obtained using a pan-HLA class II antibody (after first
depleting for HLA-DR29). Focusing solely on the novel data
generated in this study, we find that both the quantity and quality
of the obtained DQ ligands are on par with what is found for
HLA-DR, resulting in predictive performance for the associated
dataset being equal between the two. This result has large impacts
and suggests that modeling DQ is a task of equal complexity to
that of HLA-DR, and that the current lower performance of DQ
compared to DR is driven by low quantity and quality of data; a
situation that can be resolved by generation of high quality and
volume data as outlined in this study.

In conclusion, other than demonstrating an overall improved
predictive performance and coverage of HLA-DQ molecules, a
key result of our work is an improved understanding of the
relative contribution of cis versus trans-only paired molecules to
the total HLA-DQ immunopeptidome demonstrating a very
limited role of the latter in complementing the specificity space.
We believe these findings will provide a foundation for further
research defining the molecular role of HLA-DQ in the onset of
cellular immunity within autoimmune and infectious diseases.

Materials and methods
Cell lines and antibody. Homozygous B lymphoblastoid cell lines (BLCL) were
obtained from the International Histocompatibility Working Group (IHWG) Cell
and DNA bank housed at the Fred Hutchinson Cancer Research Center, Seattle,
WA (http://www.ihwg.org). A group of 16 cell lines expressing the high frequency
HLA-DQ alleles were selected for the study (Supplementary Data 1). To guarantee
intact class II processing and presentation machinery and to ensure that the total
HLA-DQ expression represents the physiological level, use of engineered cells was
avoided.

The cells were grown in high density cultures in roller bottles in complete RPMI
medium (Gibco) supplemented with 15% fetal bovine serum (FBS; Gibco/
Invitrogen Corp) and 1% 100 mM sodium pyruvate (Gibco). Cells were harvested
from the suspension, washed with PBS and spun down at 4 C for 10 min. The cell
pellets were immediately frozen in LN2 and stored at −80 until downstream
processing23. All cell lines were subjected to high-resolution HLA typing (HLA-A,
-B, -C, DRB1,3, 4, 5, DP and DQ) immediately upon receipt and growth in our
laboratory, for authentication prior to large scale culture and data collection. The
anti-human HLA-DQ specific monoclonal antibody was produced in house from a
hybridoma cell line (clone SPVL3) and used for affinity purification of total HLA
DQ from the BLCLs.

Isolation and purification of HLA-DQ bound peptides. HLA-DQ molecules were
purified from the cells by affinity chromatography using the anti-human HLA-DQ
specific antibody (clone SPVL3). Immunoaffinity columns were generated by
coupling 2 mg of the purified antibody to 1 mL of matrix (CNBr-activated
Sepharose 4 Fast Flow, Amersham Pharmacia Biotech, Orsay, France)23. Frozen

cell pellets were pulverized using Retsch Mixer Mill MM400, resuspended in lysis
buffer comprised of Tris pH 8.0 (50 mM), Igepal, 0.5%, NaCl (150 mM) and
complete protease inhibitor cocktail (Roche, Mannheim, Germany) and incubated
at 4 C for 1 h on a rotary shaker. Lysates were centrifuged in an Optima XPN-80
ultracentrifuge (Beckman Coulter, IN, USA) at 4 C for 90 min (200,000 xg).
Cleared supernatants were filtered using a 0.45 µm filter and were loaded on
immunoaffinity columns overnight at 4 C. Columns were washed sequentially with
10 cv of wash buffers at pH:8.026 and were eluted with 0.2 N acetic acid. The HLA
was denatured, and the peptides were isolated by adding glacial acetic acid (up to
10%) and heat (76 C for 10 min). The mixture of peptides and HLA-DQ was
subjected to reverse phase high performance liquid chromatography (RP-HPLC).

Fractionation of the HLA/Peptide mixture by RP-HPLC. RP-HPLC was used to
reduce the complexity of the peptide mixture eluted from the affinity column. First,
the eluate was dried under vacuum using a CentriVap concentrator (Labconco,
Kansas City, Missouri, USA). The solid residue was dissolved in 10% acetic acid
and fractionated over a 150-mm long Gemini C18 column, pore size 110 Å, particle
size 5 µm (Phenomenex, Torrance, California, USA) using a Paradigm MG4
instrument (Michrom BioResources, Auburn, California, USA). An acetonitrile
(ACN) gradient was run at pH 2 using a two-solvent system. Solvent A contained
2% ACN in water, and solvent B contained 5% water in ACN. Both solvent A and
Solvent B contained 0.1% trifluoroacetic acid (TFA). The column was pre-
equilibrated at 2% solvent B. The sample was loaded on the column in a period of
18 min using a solvent system comprised of 2% solvent B at a flow rate of 120 µl/
min. Then a two-segment gradient was run at 160 µl/min flow rate: 4 to 40%
Solvent B for 40 min, followed by 40 to 80% Solvent B for 8 min23. Fractions were
collected in 2-min intervals using a Gilson FC 203B fraction collector (Gilson,
Middleton, Wisconsin, USA), and the ultra-violet (UV) absorption profile of the
eluate was recorded at 215 nm wavelength.

Nano LC-MS/MS analysis. Peptide-containing HPLC fractions were dried and
resuspended in a solvent composed of 10% acetic acid, 2% ACN and iRT peptides
(Biognosys, Schlieren, Switzerland) as internal standards. Fractions were applied
individually to an Eksigent nanoLC 415 nanoscale RP-HPLC (AB Sciex, Fra-
mingham, Massachusetts, USA), including a 5-mm long, 350 µm internal diameter
Chrom XP C18 trap column with 3 µm particles and 120 Å pores, and a 15-cm-
long ChromXP C18 separation column (75 µm internal diameter) packed with the
same medium (AB Sciex, Framingham, Massachusetts, USA). An ACN gradient
was run at pH 2.5 using a two-solvent system. Solvent A was 0.1% formic acid in
water, and solvent B was 0.1% formic acid in 95% ACN in water. The column was
pre-equilibrated at 2% solvent B. Samples were loaded at 5 μL/min flow rate onto
the trap column and run through the separation column at 300 nL/min with two
linear gradients: 10 to 40% B for 70 min, followed by 40 to 80% B for 7 min.

The column effluent was ionized using the nanospray III ion source of an AB
Sciex TripleTOF 5600 quadruple time-of-flight mass spectrometer (AB Sciex,
Framingham, MA, USA) with the source voltage set to 2400 V. Information-
dependent analysis (IDA) of peptide ions was acquired based on a survey scan in
the TOF-MS positive-ion mode over a range of 300 to 1250 m/z for 0.25 s.
Following each survey scan, up to 22 ions with a charge state of 2–5 and intensity
of at least 200 counts per second were subjected to collision-induced dissociation
(CID) for tandem MS analysis (MS/MS) over a maximum period of 3.3 s. Selection
of a particular ion m/z was excluded for 30 s after three initial MS/MS experiments.
Dynamic collision energy was utilized to automatically adjust the collision voltage
based upon ion size and charge23. PeakView Software version 1.2.0.3 (AB Sciex,
Framingham, MA, USA) was used for data visualization.

Peptide data analysis. Peptide sequences were identified using PEAKS Studio
10.5 software (Bioinformatics Solutions, Waterloo, Canada) at a precursor mass
error tolerance of 30 ppm and a fragment mass error tolerance of 0.02 Da. A
database composed of SwissProt Homo sapiens (taxon identifier 9606) and iRT
peptide sequences was used as the reference for database search. Variable post-
translational modifications (PTM) including acetylation, deamidation, pyr-
oglutamate formation, oxidation, sodium adducts, phosphorylation, and cysteiny-
lation were included in database search. Identified peptides were further filtered at
a false discovery rate (FDR) of 1% using PEAKS decoy-fusion algorithm.

Immunopeptidome data. The immunopeptidome data consist of MS-eluted ligand
(EL) and binding affinity (BA) data from the earlier NetMHCIIpan-4.1 combined
with the EL data generated specifically for this study (see above). The novel MS-
immunopeptidome data set covers 14 different HLA-DQ molecules obtained from
16 homozygous BLCLs. This data was filtered to exclude potential HLA class I
binders and other co-immunoprecipitated contaminants, resulting in a list of
peptides of length 12-2123.

The EL data were mapped to the human reference source proteome to define
source protein context. Peptides with no identical reference match were excluded,
resulting in ~4% of peptides being discarded. Finally, the EL data were enriched in
a per sample-id manner with random natural peptides assigned as negatives. This
enrichment was done by sampling peptides of 12-21 amino acids in length in a
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uniform manner in an amount equal to five times the number of peptides for the
most prevalent length in the positive data for the given sample.

Our final novel data set consists of 39,334 positive and 369,313 negative peptides
covering 14 unique HLA-DQ molecules. The positive peptides of this dataset are
available in Supplementary Data 2. Merging the novel EL data with the earlier
NetMHCIIpan-4.1 data (expanded to include peptides 12 amino acids in length),
the complete EL data consists of 480,845 positive and 4,910,165 negative data points
from 177 samples/cell lines, and the BA data consist of 129,110 data points.

The data was partitioned into five subsets for cross-validated method training
and evaluation using the common-motif approach35 merging EL and BA data
ensuring that peptides sharing an identical overlap of 9 or more consecutive amino
acids were placed in the same subset.

Model training. Models were trained using the NNAlign_MA machine learning
framework31 in a manner similar to that for NetMHCIIpan-4.02. That is, the
complete model consists of an ensemble of 100 neural networks of two different
architectures both with one hidden layer and either 40 or 60 hidden neurons, with
10 random weight initializations for each of the 5 cross-validation folds (2 archi-
tectures, 10 seeds, and 5 folds). All models were trained using backpropagation
with stochastic gradient descent, for 300 epochs, without early stopping, and a
constant learning rate of 0.05. Only single allele (SA) data were included in the
training for a burn-in period of 20 epochs. Subsequent training cycles included
multi-allele (MA) data. Two main models were trained, one including the original
NetMHCIIpan-4.1 data and one including the novel HLA-DQ data. Furthermore,
an additional model was trained with the novel data using peptide context
encoding. Here, context was defined in both the peptide’s N- and C-terminal as
three residues from the source protein flanking the peptide, along with three
starting residues from the peptide, all concatenated into a 12-mer amino acid
sequence. For further details refer to Barra et al. 201827.

Performance evaluation and MHC restriction deconvolution. For MA datasets,
the HLA annotation for each peptide is based on which of the HLA molecules
expressed in the given cell line received the highest prediction score. To balance the
differences between HLAs’ prediction score distributions, percentile normalized
prediction scores were generated for each molecule by ranking the prediction
scores against a distribution of prediction scores of random natural peptides. As an
example, if a peptide ligand receives a percentile rank score of 1, it means that 1%
of the random peptides had a higher prediction score than the peptide ligand for
the given HLA19,36.

Performance was evaluated on the concatenated cross-validation test set
predictions using three separate metrics, namely AUC (Area Under the ROC
Curve), AUC 0.1 (Area Under the ROC Curve integrated up to a False Positive
Rate of 10%) and Positive Predictive Value (PPV). Each metric was calculated in a
per-HLA manner from the “raw” prediction scores after HLA annotation. Further,
the PPV was calculated as the fraction of true positives in the top N predictions,
where N is the number of ligands assigned to a given HLA molecule. For the per-
HLA performance evaluation, only HLA molecules with at least 10 positive
peptides in both models were included in the performance evaluation, to ensure a
level of certainty in the calculated performance metrics.

Consistency correlation matrix analysis. In order to assess the novel DQ data’s
impact on NNAlign_MA’s motif deconvolution, a consistency correlation matrix
analysis was performed2. To avoid potential MS co-immunoprecipitated contaminant
peptides biasing this analysis, the union of identified trash peptides (i.e. positive
peptides given a percentile rank >20 in either of the two models) was removed. A
position-specific scoring matrix (PSSM) was next generated for each molecule in each
cell line based on the predicted peptide binding cores. Here, a minimum of 20 positive
peptides was required in order for a PSSM to be generated. Then, for each pair of cell
lines sharing a given molecule, the Pearson Correlation Coefficient (PCC) between the
molecule’s PSSMs was calculated. The mean consistency value for a given molecule
was then given as the average PCC over each unique cell line pair (excluding self-
correlations). This metric thus indicates how consistent the identified binding motifs
are across different datasets for each HLA class II molecule.

Similarity distance measure. Distance between two HLA class II molecules was
estimated from the pseudo-distance of the two molecules, i.e.

d ¼ 1� s A; Bð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s A; Að Þ � sðB; BÞ
p ð1Þ

where s(X, Y) is the summed BLOSUM 50 similarity between the pseudo-sequences
of molecule X and Y37. Here, each pseudo-sequence was defined from a set of 34
polymorphic residues within the HLA sequence concatenated into a continuous
sequence, of which 15 and 19 residues derive from the α- and β-chain,
respectively32.

Estimation of prevalent stable HLA-DQ molecules. A list of HLA-DQ α- and β-
chains forming prevalent stable HLA-DQ heterodimers was constructed by first
obtaining lists of DQA1 and DQB1 alleles with annotated worldwide allele

frequencies. This was done by querying the allelefrequencies.net database38 for
high resolution alleles in populations of size 100 and above. Next, worldwide allele
frequencies were obtained as population size weighted averages capping the
maximum population size to 1000. Finally, a list of prevalent HLA-DQ molecules
was constructed by pairing all α and β combinations following the restrictions
outlined in Table 1, only including molecules with a combined allele frequency
>0.00005. This resulted in a list of 154 HLA-DQ molecules.

Estimation of worldwide haplotype frequencies. Worldwide HLA-DQ haplotype
frequencies were estimated by querying the allelefrequencies.net database38 for
high resolution DQ haplotypes in populations of size 100 and above, average across
population as described above for HLA-DQ frequencies.

HLA-DQ specificity trees. An HLA-DQ specificity tree was constructed by first
reducing the list of 154 prevalent HLA-DQ molecules to the set of unique pseudo-
sequences among the molecules. Then, each unique pseudo-sequence was mapped
to a representative HLA-DQ molecule name. By default, a DQ molecule in the list
of molecules covered by the training data was used to represent a pseudo-sequence
when possible. Furthermore, all 14 DQ molecules in the novel data were used to
represent their given pseudo-sequences. In other cases of multiple options for a
given pseudo-sequence, the most prevalent DQ molecule in terms of global allelic
frequency was chosen. The specificity tree was then calculated using the
MHCCluster method33 and visualized using the Iroki phylogenetic tree viewer39.

A similar tree was constructed based on clustering of the DQ pseudo-sequences.
This tree was calculated with ClustalW-2.140 using its phylogenetic tree function,
and again visualized using the Iroki tree viewer39.

Independent benchmark. For our benchmark against MixMHC2pred-2.07, an
independent dataset was taken from Marcu et al.34, which consists of eluted ligand
data from 15 donor samples (listed in Supplementary Table 7). This data was pro-
cessed in the same way as the training data, i.e. peptides were mapped to the human
proteome to define context, and were subsequently enriched with random negative
peptides. To reduce bias, peptides which were present in the EL training data of our
method were not included in the benchmark. This yielded a total of 163,933 positive
and 2,900,818 negative peptides covering 66 unique HLA class II molecules.

Predictions on the benchmark data were made both with and without peptide
context encoding. For peptides located near the beginning or end of the source
protein, missing context residues were represented by “-” and “A” in MixMHC2pred-
2.0 and our method, respectively. Further, in both our method and MixMHC2pred,
the HLA annotation for each peptide was based on the lowest percentile rank score
reported by the given method for the HLA molecules in the given sample.

Performance was evaluated on a per-sample basis in terms of AUC, AUC 0.1,
and PPV. For our method, we calculated the performance values in the same way
as in the cross-validation using the ‘raw’ prediction scores, while for
MixMHC2pred-2.0 the performance was calculated using its reported percentile
rank scores.

Data visualization. Data visualizations in the manuscript figures were made in
Python 3.8 using the Matplotlib library (version 3.5.1) and the seaborn library
(version 0.12.0). Sequence logos were constructed using Seq2Logo-2.041.

Statistics and reproducibility. Statistical analyses were done in Python 3.8 using
the scipy library (version 1.9.1). For each statistical test, the sample size was based
on the number of samples or HLA molecules present in the data. Further, a
standard significance level of 0.05 was used in each test. For the performance
evaluations, the statistical tests were mainly performed using one-tailed binomial

Table 1 List of DQA1-DQB1 haplotypes extracted from
Creary et al. and Petersdorf et al.13,14.

DQA1*–DQB1* DQA1* –DQB1*

DQA1*01-DQB1*05 DQA1*04-DQB1*02
DQA1*01-DQB1*06 DQA1*04-DQB1*03
DQA1*02-DQB1*02 DQA1*04-DQB1*04
DQA1*02-DQB1*03 DQA1*05-DQB1*02
DQA1*02-DQB1*04 DQA1*05-DQB1*03
DQA1*03-DQB1*02 DQA1*05-DQB1*04
DQA1*03-DQB1*03 DQA1*06-DQB1*02
DQA1*03-DQB1*04 DQA1*06-DQB1*03

DQA1*06-DQB1*04

Due to the relatively small sample size for some populations included in the study by Creary
et al.13, the reported alleles and haplotypes may not reflect all haplotypes observed in the entire
populations. Therefore, in this table only low-resolution (2 digit) DQ haplotypes were included
to define the observed DQA1-DQB1 haplotypes.
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tests excluding ties. The alternative hypothesis in these tests is thus that the method
trained with the novel data is more likely to perform better on a given sample or
HLA molecule than the other method.

Reproducibility of our experimental and computational results was ensured by
highly detailed descriptions of the experimental designs and making all relevant
datasets available (see ‘Data availability’). For the experimental data generation, we
used two sets of different homozygous BLCLs sharing the same HLA-DQ allele to
confirm reproducibility of the motifs obtained for those alleles (721.221 and
IHW09004 shared the DQA1*01:01-DQB1*05:01 allele and IHW09072 and
IHW9100 shared the DQA1*04:01-DQB1*04:02 allele).

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The mass spectrometry proteomics data have been deposited to the ProteomeXchange
Consortium via the PRIDE42 partner repository with the dataset identifier PXD040860
and 10.6019/PXD040860. HLA typing for the 16 BLCLs used in the study are included in
Supplementary Data 1. The novel immunopeptidomics data generated for this study is
available in Supplementary Data 2. Numerical source data used to generate the main
figures are included in Supplementary Data 3. The training dataset used in the study can
be downloaded from the NetMHCIIpan-4.2 web server on the ‘Training data sets’ page,
available at https://services.healthtech.dtu.dk/services/NetMHCIIpan-4.2/.
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