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Abstract

The interaction between antibodies and antigens is one of the most important immune system mechanisms for clearing
infectious organisms from the host. Antibodies bind to antigens at sites referred to as B-cell epitopes. Identification of the
exact location of B-cell epitopes is essential in several biomedical applications such as; rational vaccine design, development
of disease diagnostics and immunotherapeutics. However, experimental mapping of epitopes is resource intensive making
in silico methods an appealing complementary approach. To date, the reported performance of methods for in silico
mapping of B-cell epitopes has been moderate. Several issues regarding the evaluation data sets may however have led to
the performance values being underestimated: Rarely, all potential epitopes have been mapped on an antigen, and
antibodies are generally raised against the antigen in a given biological context not against the antigen monomer. Improper
dealing with these aspects leads to many artificial false positive predictions and hence to incorrect low performance values.
To demonstrate the impact of proper benchmark definitions, we here present an updated version of the DiscoTope method
incorporating a novel spatial neighborhood definition and half-sphere exposure as surface measure. Compared to other
state-of-the-art prediction methods, Discotope-2.0 displayed improved performance both in cross-validation and in
independent evaluations. Using DiscoTope-2.0, we assessed the impact on performance when using proper benchmark
definitions. For 13 proteins in the training data set where sufficient biological information was available to make a proper
benchmark redefinition, the average AUC performance was improved from 0.791 to 0.824. Similarly, the average AUC
performance on an independent evaluation data set improved from 0.712 to 0.727. Our results thus demonstrate that given
proper benchmark definitions, B-cell epitope prediction methods achieve highly significant predictive performances
suggesting these tools to be a powerful asset in rational epitope discovery. The updated version of DiscoTope is available at
www.cbs.dtu.dk/services/DiscoTope-2.0.
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Introduction

The interaction between antibodies and antigens has been the

center of attention for multiple disciplines within immunological

research and applications [1][2], and a dozen of methods for

computational mapping of antibody binding on the antigen

surface (B-cell epitopes) have been developed in the later years.

However, the performance of these methods has in general been

moderate [3][4].

Methods for predicting B-cell epitopes can in general be divided

into two groups based on the level of information needed to do the

prediction; methods utilizing information derived only from the

protein sequence and methods using information from protein 3-

dimentional structures. Traditionally, sequence based methods are

build from calculations of hydrophilicity, flexibility, Beta-turns and

surface accessibility [5][6][7][8], and in recent years methods

utilizing amino acid composition and amino acid cooperativeness

have shown promising results [9][10][11]. While these methods

perform reasonable when predicting epitopes composed of a

continuous stretch of amino acid (linear epitopes), they fail to

predict epitopes consisting of amino acids segments, distantly

separated in the protein sequence and brought together by the

conformational folding of the polypeptide chain (conformational

epitopes).

Inclusion of structural information, to some extent, overcomes

the shortcoming of sequence-based methods, as amino acid distant

in sequence but close in space can be identified. Andersen and

coworkers [12] investigated the performance of the Parker scale

[6] and epitope amino acid composition as well as measures

derived from the protein 3-dimentional structure for prediction of

conformational epitopes and concluded that introduction of

structural data significantly outperformed sequence based meth-

ods. The method developed, DiscoTope, acts by probing the carbon

backbone of the protein structure under study with a 10 Å sphere,

summing the propensity score of residues in the sphere and

subtracting the neighbor count (number of amino acid residues

within the sphere). Other methods define the structural neighbor-

hood as the nearest surface exposed residues [13] or a patch on the

surface of the protein [14][15]. The introduction of structural data

furthermore expands the number of physical-chemical and

biological attributes that can be calculated and used for prediction

[13][16], as exemplified by the work of Rubinstein and coworkers
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[15]. In their work, Rubinstein et al. [15] calculated 45 attributes

from the 3-dimentional structures of known epitopes and applied

them for prediction. Interestingly, only a fraction of attributes (21/

45) that previously had been proved to significantly distinguish

epitope from non-epitope areas, proved to be important for

prediction. Similarly, the EPSVR method developed by Liang and

coworkers [13] implements 6 propensity scores in a support vector

regression algorithm, of which three have been proved to be

associated with antigenicity [17], and the remaining three with

surface exposure. However, performance of the two methods, and

other methods utilizing a vast number of features, still only achieve

predictive performance values comparable to much simpler

models employing two or three attributes [4][12][18][19][20]. In

general, structural based methods are most successful when

implementing features like amino acid composition [12][15][18],

epitope amino acid cooperatively [15], secondary structure

[13][15] in combination with one or more surface measure e.g.

RSA [21], neighbor count [12], half-sphere neighbor count [22],

and protrusion index [23].

While structural information significantly improve predictions

of B-cell epitopes, the use of protein structures introduce several

major problems: First of all, even though the number of resolved

antigen-antibody structures is increasing, data for building

structure-based models are still scarce. Secondly, very few antigens

have been extensively studied in order to map the exhaustive set of

epitope residues. The existence of un-characterized epitopes

makes it difficult to accurately evaluate the performance of

prediction models, as even a perfect prediction will classify

experimentally undetected epitopes as false positives. Furthermore,

biologically relevant proteins are often parts of larger complexes,

which behave as one unit in the biological environment that they

are part of. However, structural information on the entire

‘‘biological unit‘‘ is often not available, hence leading to a lack

of information essential to correctly predict B-cell epitopes.

Here, we present an improved version of the structural based

prediction method, DiscoTope, updated using a redefinition of the

spatial neighborhood used to sum propensity scores and half-

sphere exposure as a surface measure. Using this update method,

we illustrate when and why predictions may fail and show that

failed predictions, to some extent, can be explained by a poorly

defined benchmark setup or an incomplete definition of the

biologic unit responsible for the given antibody response.

Results

The DiscoTope method [12] is driven by a combination of: 1)

statistical difference in amino acid composition between epitope

and non-epitope residues, calculated as log-odds ratios [24], 2) a

definition of the spatial neighborhood for integrating log-odds

ratios in a residue proximity and 3) a surface measure. As neither

the definition of spatial neighborhood nor surface measures are

trivial tasks, one aim of the presented work was to investigate the

ability of a new scoring function for defining a spatial neighbor-

hood and different surface measures to improve the accuracy for

B-cell epitope prediction. Next, given such improved predictive

performance, we aimed to demonstrate that changing the

benchmark setup to include for each antigen information from

multiple epitopes and the ‘‘biological unit’’ used to raise the

antibody response significantly enhance the reported prediction

power.

Defining the spatial neighborhood: Predictions by log-
odds ratios

Several methods for predicting B-cell epitopes have successfully

utilized the deviation in epitope and non-epitope amino acid

composition [12][15][13][10]. Here, epitope amino acid compo-

sition was calculated as the logarithm of the ratio between amino

acid frequencies in epitope and non-epitopes, as described in

Andersen et al. [12]. A novel scoring function, integrating amino

acid log-odds ratios in the spatial proximity of a residue was used

to calculate the combined log-odds ratio scores used for prediction.

The function was inspired by the work of Andersen et al. [12] and

Sweredoski and Baldi [18] and defines the neighborhood around

each residue as a sum of neighboring log-odds ratios weighted by a

function that decreased concurrently with distance. In difference

to the function proposed by Sweredoski and Baldi [18], which uses

5 distance thresholds to stepwise decrease the weight on log-odds

ratios, the function proposed here is defined by only two

parameters: a sequential smoothing window w and a distance

scale kps (for details see Material and Methods). The parameters

were estimated by a 2-dimentional-grid search applied to the

DiscoTope dataset described in [12], with optimal values w = 160

(i.e no smoothing) and kps = 21.660.90 Å, respectively, where the

values given are the mean and standard deviation from the 5 fold

cross-validated training procedure. The optimal parameters were

hence found to be stable between each data set in the cross-

validation. Predictions of B-cell epitope by log-odds scores using

this proximity sum function had a performance of AUC 0.738

(Figure 1).

Predictions by surface measures
5 different surface measures calculated from the protein

structure, were tested for their ability to discriminate epitope

from non-epitope residues (see Materials and Methods and Table

S3 for details). As illustrated in Figure 1, all measures had

comparable predictive performance and no method significantly

outperforming the others (p.0.11 in all cases).

Author Summary

The human immune system has an incredible ability to
fight pathogens (bacterial, fungal and viral infections). One
of the most important immune system events involved in
clearing infectious organisms is the interaction between
the antibodies and antigens (molecules such as proteins
from the pathogenic organism). Antibodies bind to
antigens at sites known as B-cell epitopes. Hence,
identification of areas on the surface antigens capable of
binding to antibodies (also known as B-cell epitopes) may
aid the development of various immune related applica-
tions (e.g. vaccines and immunotherapeutic). However,
experimental identification of B-cell epitopes is a resource
intensive task, thereby making computer-aided methods
an appealing complementary approach. Previously report-
ed performances of methods for B cell epitope predictive
have been moderate. Here, we present an updated version
of the B-cell epitope prediction method; DiscoTope, that on
the basis of a protein structure and epitope propensity
scores predicts residues likely to be involved in B-cell
epitopes. We demonstrate that the low performances to
some extent can be explained by poorly defined bench-
marks, and that inclusion of additional biological informa-
tion greatly enhances the predictive performance. This
suggests that, given proper benchmark definitions, state-
of-the-art B cell epitope prediction methods perform
significantly better than generally assumed.

Reliable B Cell Epitope Predictions
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Combining surface and log-odds ratio scores
A weighted sum of proximity summed log-odds ratios and a

surface measure was used to give an overall prediction score (for

details see Materials and Methods). The best performance was

achieved when combining log-odds ratio scores with neighbor

count in upper half spheres (UHS), which had an average AUC of

0.748 on the DiscoTope dataset using the cross-validated

benchmark procedure. This method outperforms the original

DiscoTope method (0.711. p = 0.0022) and also all the uncombined

methods (p,0.028). As the method is driven by main principles

introduced in the original DiscoTope method, we name this method

DiscoTope-2.0.

Surprisingly, the only two surface measures that significantly

improved performance in combination with log-odds ratio scores

were UHS and RSA, which individually had the lowest predictive

power. However, the FS, Ta and HSE scores are significantly

stronger correlated with the log-odds scores than the UHS and

RSA scores (p,1026, Pearson correlation coefficients of 0.37–0.39

for UHS, RSA and 0.51–0.55 and for FS, Ta, HSE, respectively).

These results hence suggest that the UHS and RSA scores contain

more complementary information to the log-odds scores compared

to the FS, HSE and Ta scores, explaining why these surface

measures are optimal in the combined model.

The gain in predictive performance between the DiscoTope-2.0

model (combining surface measures and proximity summed log-

odds score) and the proximity summed log-odds scores alone is

relatively small (see Figure 1). This could suggest that the signal

from the surface exposure to some degree is embedded in the log-

odds scores, as also suggested from the correlation analysis above.

The log-odds scores are calculated from the ratio of amino acids

frequencies found in epitopic versus non-epitopic residues. As B

cell epitopes by nature are most often exposed, the log-odds will

contain an implicit bias towards commonly exposed amino acids.

To investigate the effect of this bias, we recalculated the log-odds

ratios excluding residues with a relative surface accessibility (RSA)

below a threshold of 0.01, 0.05 and 0.10 respectively and retrained

all parameters. Note, the set of epitopic residues have an average

RSA value of 0.30. In this setup, the set of non-epitopic residues is

hence altered to include only exposed residues (at different

thresholds), hence lowering the preferential bias towards exposure

in the log-odds scores. The predictive performance of log-odds

scores alone decreased concurrently with an increase in surface

exposure threshold (AUC 0.731, 0.704 and 0.656 for threshold

0.01, 0.05 and 0.10 respectively), and more weight was put on the

surface measure scores when combining log-odds and surface

measure scores (for details see Figure S1 and S2). The loss of

prediction power by the recalculated log-odds scores could not be

restored in combination with any of the 5 surface measures and

the combined method did in all cases perform worse than the

DiscoTope-2.0 method using the original log-odds scores (data not

shown). It is hence clear that the high performance of the log-odds

scores to a very high degree can be contributed to the inherent

signal discriminating between surface and non-surface amino acid

preferences, and not to a signal discriminating epitopic from non-

epitopic surface residues.

Impacts of proper definition of benchmark data
A critical aspect of evaluation of a prediction model is the

quality and consistency of the benchmark data set. In particular,

incomplete annotations of benchmark data lead to artificially low

estimates of the predictive performance due to positive predictions

incorrectly being labeled as false positive. Having defined a high

performing B cell epitope predictor, we can access the impacts of

such incomplete benchmark definitions on the benchmark

performance. The cross-validation benchmark setup used in this

work for model development, as originally defined by Andersen

and coworkers [12], suffers from several aspects of incomplete

annotations. In the benchmark, each of the 75 antigen-antibody

complexes in the DiscoTope dataset is treated as single entities

ignoring the fact that the same antigen might contain several

epitopes. Since each antigen-antibody complex is handled as a

single entity, only the single epitopic region defined in the given

complex is annotated as positive, ignoring other known epitopic

regions defined in other antibody complexes with the same

antigen. As earlier realized by Ponomarenko and Bourne [3] and

Liang et al., [13], this annotation scheme is not optimal, and to

evaluate how it impacts the predictive performance, AUC scores

for antigens possessing more than one epitope (Table S1) were

recalculated leaving out residues annotated as epitopes in other

antigen:antibody complexes included in the benchmark as

previously described [25]. The effect was most dramatic illustrated

by lysozyme that has 29 antigen-antibody complexes in the data

set. Here the AUC score increased from 0.682 to 0.847 (Figure 2)

when taking into account multiple definitions of epitopes. The

AUC score for 5 of 6 affected proteins gained in performance, with

an average increase of 0.039 (Figure 3). Furthermore, the number

of non-similar epitopes mapped onto each antigen correlated

significantly to the performance of DiscoTope-2.0 (Spearman’s

rank correlation coefficient of 0.33, p,0.01, exact permutation

test). See Materials and Methods for definition of non-similar

epitopes.

Another aspect of the benchmark definition that potentially has

a large impact on the predictive performance is the data defining

the neighborhood environment for each residue used to calculate

the prediction score. Proteins are often parts of larger complexes,

which behave as one biological unit. In most cases, antibodies are

raised against the entire ‘‘biological unit’’, and not only the part of

the unit comprising the epitope. In the DiscoTope dataset

described by Andersen et al., [12] only the chain interacting with

the antibody is used to define the structural environment of the

residues in the antigen. However, this might results in some

residues being considered as highly exposed and predicted as

epitopes, when they in reality are involved in complex formation

with another chain and not accessible for the antibody. To

Figure 1. Cross-validated performance. Performances of different
methods for predicting B-cell epitopes evaluated on the DiscoTope
dataset. From left to right: The original DiscoTope method, the
uncombined log-odds ratio scores as described in text, the surface
measures; UHS, RSA, FS HSE and Ta (see text) and the DiscoTope2.0
method as described in text. Performance of the original DiscoTope
method was obtained from [12].
doi:10.1371/journal.pcbi.1002829.g001

Reliable B Cell Epitope Predictions
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investigate the impact on the predictive performance by including

the biological unit rather than the single antigen chain, the

performance for the subset of antigen complexes were recalculated

where additional structural information on the biological unit was

available in the PDB file using the biological unit as input. The 10

affected proteins had on average an increase in AUC of 0.020,

with the KvAP potassium channel and cytochrome c proteins

showing the largest increase (Figure 3). Figure 4 illustrates the

change in prediction for the KvAP potassium channel. Using only

the antigen:antibody chains as input the performance of DiscoTope-

2.0 is 0.737. When including the whole biological unit, the value is

increased to 0.880, and excluding residues categorized as

cytoplasmic or trans-membrane (UniProt release 2012_01, www.

uniprot.org), and thus not accessible for antibody binding the

performance value is further increased to 0.946. The average

performance of the 13 proteins (homology groups) affected by

benchmark redefinition increased from an AUC of 0.791 to 0.824

(p,0.035) and the average performance of the entire DiscoTope

dataset increased from an AUC of 0.748 to 0.765. Performances

on each antigen in the DiscoTope dataset are presented in Table S1.

Comparison to the PEPITO, ElliPro, SEPPA, Epitopia,
EPCES and EPSVR prediction methods

Besides assessing the performance of DiscoTope-2.0 on the 75

antigen structures included in the DiscoTope dataset, the

performance was assessed on an independent evaluation dataset

extracted from the IEDB-3D database. The dataset consists of 52

antigen structures with no sequence overlap to the DiscoTope

dataset (see Materials and Methods). To avoid bias towards

antigens represented by multiple structures, the 52 structures were

clustered into 33 homology groups based on antigen sequence

similarity. The epitopes and benchmark procedure were initially

defined in the same manner as for the DiscoTope dataset, hence

only the chains interacting with the antibody were included (no

Figure 2. Illustration of benchmark redefinition on Lysozyme. 6 unique discontinuous epitopes have been identified for lysozyme. Including
this comprehensive information on multiple epitopes for Lysozyme, the reported performance is increased. Predictions are illustrated as a heatmap
on the protein surface where Red = high prediction score, Blue = low prediction score.
doi:10.1371/journal.pcbi.1002829.g002

Figure 3. Effect of benchmark redefinition and inclusion of biological units in prediction accuracy for the subset of 13 affected
homology groups (see text). Refer to Table S1 for complete definition of protein names.
doi:10.1371/journal.pcbi.1002829.g003

Reliable B Cell Epitope Predictions
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biological unit) and multiple epitopes for the same antigen were

treated as single entities (multiple epitopes are not accounted for).

The average predictive AUC performance of DiscoTope-2.0 on

the evaluation benchmark dataset was 0.731, which is higher than

that of the original DiscoTope method (0.705). The difference is

however not significant (p = 0.086). The evaluation dataset was

furthermore used to compare the performance of DiscoTope-2.0

to the PEPITO (also known as BEpro) [18], ElliPro [19], SEPPA

[26], Epitopia [14], EPCES [27] and EPSVR [13] methods, which

are other recently developed methods for predicting conforma-

tional B-cell epitopes based on protein 3-dimentional data. The

average AUC performance of DiscoTope-2.0 was significantly

higher than that of ElliPro (0.686, p = 0.041) and comparable to

that of PEPITO (0.732, p = 0.53). Comparison to the SEPPA,

Epitopia, EPCES and EPSVR prediction methods were per-

formed on subsets of the evaluation dataset not sharing sequence

similarity to data used for training of the methods (Blast E-

value,0.01). On these reduced benchmark dataset DiscoTope-2.0

showed improved AUC performance compared to SEPPA (0.720

vs 0.711, p = 0.34, 34 structures used) and EPCES (0.733 vs 0.695

p = 0.15, 49 structures used) and significantly improved perfor-

mance compared to Epitopia (0.727 vs 0.652 p = 0.033, 43

structures used) and EPSVR (0.746 vs 0.588 p = 0.006, 24

structures used). The AUC values for DiscoTope-2.0, Disco-

Tope-1.2, PEPITO, ElliPro, SEPPA, Epitopia, EPCES and

EPSVR on the evaluation dataset are available in supplementary

materials Table S4. Note, that for the evaluation data set, only

max four antibody:antigen structures were available for each

antigen. For the training data set this number was as high as 29

(for lysozyme). As shown before, these low numbers of anti-

body:antigen structures for the antigens in the evaluation data set

inherently translate into incomplete annotations of the epitopes

contained within each antigen, and hence to an improper

benchmark definition, leading to low benchmark performances.

The AUC value gives the overall predictive performance of a

method integrated over the entire range of specificities. Often

another relevant performance measure is how many of a given set

of high scoring predictions are actual positive (the predictive

positive value, PPV) and how large a fraction of the actual

positives that are included in this set of predictions (the sensitivity).

Given that an average B cell epitope contains 15 residues (Table

S1), we calculated the average PPV and sensitivity values from the

subset of top 15 and top 30 highest scoring predictions from each

antigen for the different methods. The results of this analysis are

shown in Table 1 for DiscoTope-2.0, DiscoTope-1.2, PEPITO

and ElliPro using the entire benchmark dataset and in table S5 for

SEPPA, Epitopia, EPCES and EPSVR using the subset of the

benchmark dataset not used for training the different methods.

These results confirm the overall earlier findings and consistent

performance gain of the DiscoTope-2.0 method compared to the

other methods included in the benchmark both in terms of PPV

and sensitivity.

In the evaluation dataset, additional structural information

about the ‘‘biological unit’’ and/or multiple epitopes could be

detected for 8 of the 33 homology groups. Including this additional

information about the ‘‘biological unit’’ for prediction and

redefining the benchmark setup to accommodate multiple

epitopes, as described above for the training dataset, led to an

statistically significant improvement in the average AUC for the 8

homology groups from 0.712 to 0.727 AUC (p = 0.021). Likewise,

were the PPV and sensitivity values using the top 30 highest

scoring predictions for each antigen increased from 0.168 to 0.188

(PPV) and 0.316 to 0.348 (sensitivity), respectively.

The overall findings on the DiscoTope dataset in terms of

performance gain when including the biological unit for prediction

and redefining the benchmark to accommodate multiple epitopes

were hence confirmed on the evaluation set.

We investigate to what degree similar performance improve-

ments were observed for the methods PEPITO, ElliPro and

SEPPA when considering the ‘‘biological unit’’ for prediction and

redefining the benchmark setup to accommodate multiple

epitopes. Here, we find that only the PEPITO method has a

performance gain whereas the SEPPA (which treats multi-chain

inputs as independent queries) performance is unaltered and

ElliPro (which applies the global shape of the input structure to

estimate residue protrusion) displays a drop in predictive

performance (data not shown).

Figure 4. Enhance prediction accuracy by inclusion of structural data of the biological unit. Illustration of prediction for KvAP potassium
channel. Left: using only one antigen chain, middle: using the biological tetramer, right: Excluding membrane and cytoplasmic residues. Predictions
are illustrated as a heatmap on the protein surface where Red = high prediction score, Blue = low prediction score. Note, that the stated performances
are for the PDB entry 1K4C and not the complete potassium homology group.
doi:10.1371/journal.pcbi.1002829.g004

Table 1. Predictive positive value (PPV) and sensitivity for
DiscoTope-2.0, DiscoTope-1.2, PEPITO and ElliPro on the
evaluation data set.

#
Residues DiscoTope-2.0 DiscoTope-1.2 PEPITO ElliPro

15 PPV 0.190 0.191 0.184 0.145

Sens 0.176 0.164 0.157 0.145

30 PPV 0.156 0.154 0.162 0.138

Sens 0.280 0.252 0.274 0.253

# Residues gives the number of highest scoring prediction included for each
antigen, PPV gives the predictive positive value (true positives)/(predicted
positives)), and Sens gives the sensitivity (true positives)/(actual positives)).
doi:10.1371/journal.pcbi.1002829.t001

Reliable B Cell Epitope Predictions
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Discussion

Here, we have presented an updated version of the DiscoTope

method for predicting discontinuous B cell epitopes. The update

includes a novel definition of the spatial neighborhood used to sum

propensity scores and half-sphere exposure as a surface measure.

Using the benchmark data set from the original DiscoTope

paper, we demonstrate that the updated method has a significantly

increased predictive performance. Several approaches to define

the epitope log-odds propensity scale were investigated with the

purpose of defining a score that could differentiate between

epitopic and non/epitopic surface residues. However, the scale

with the optimal performance was the original DiscoTope definition

defined from the amino acid frequency in epitope residues

compared to the frequency in non-epitopic residues [12]. Likewise,

were several surface measures investigated for their ability to

predict epitope residues. Here, the upper half-sphere exposure

method gave the highest performance when combined with the

proximity summed log-odds score.

The cross-validated predictive performance of DiscoTope-2.0 on

the DicoTope dataset [12] is 0.748. While this value is significantly

different from random, the performance remains far from perfect.

Many reasons exist for this relative low predictive performance.

Here we argue that one very important, and often overlooked,

reason stems from the definition of the data set. The DiscoTope

benchmark data set consists of antigen:antibody complexes found

in the protein databank. Each epitope is defined from the crystal

structure as the residues from the antigen structure that are in

contact with one or more residues in the antibody structure. All

other residues are annotated as non-epitopes. This definition is

clearly highly simplistic and will in most cases lead to incomplete

annotations, since other areas of the antigen surface than the given

epitope might also bind antibodies [13][19]. Another critical

aspect of the benchmark definition lies in the data defining the

neighborhood environment for each residue used to calculate the

prediction score. The DiscoTope method defines epitopic residues

from a combination of surface exposure and the log-odds

propensity scores. The calculation of surface exposure for a given

residue depends critically on the structural unit included to make

the calculation. In the DiscoTope data set only the chain

interacting with the antibody is used to define structural

environment of the residues in the antigen. However, proteins

are often parts of larger complexes, which behave as one biological

unit, and antibodies are often raised against this entire ‘‘biological

unit’’, and not only the part of the unit comprising the epitope. For

a subset of the data included in the DiscoTope benchmark, we can

to some degree deal with both of these aspects and make a more

precise definition of the benchmark data including information

about the biological unit and/or multiple known epitopes. In

doing this, the predictive performance is increased to 0.824.

Using an independent data set, we compared the performance

of the updated DiscoTope method to that of the PEPITO, ElliPro,

SEPPA, Epitopia, EPCES and EPSVR prediction methods. Here

we find that DiscoTope and PEPITO achieved the highest

predictive performance. Their performance was significantly

higher that the ElliPro, Epitopia and EPSVR methods but not

statistically significant different from that of the SEPPA and

EPCES methods. More importantly however, we could demon-

strate using the independent evaluation data set that including

information about the biological unit for prediction and redefining

the benchmark to accommodate multiple epitopes also here led to

an improved predictive performance of the DiscoTope method. The

gain in predictive performance when redefining the benchmark is

smaller on the evaluation data set compared to that found for the

training data. One major reason for this is that the characteriza-

tion of the antigens in the evaluation data set is more incomplete to

the ‘‘older’’ antigens of the training data set. The maximal number

of antibody:antigen structures for each antigen was thus four for

the evaluation data set, whereas as this number for the lysosome

antigen in the training data set was as high as 29. This low number

of antibody:antigen complexes available for each protein in the

evaluation data set naturally translates into an overall under-

estimation of the predictive performance.

Performing the same benchmark redefinition for the PEPITO

method led to similar improved predictive performance whereas

the performance of the SEPPA was unaltered and the ElliPro

performance dropped. This change in impact of the redefinition of

the benchmark on the predictive performance reflects general

properties of the different methods. Both DiscoTope and PEPITO

use a local exposure measure calculated from the local structural

environment of a given residue to predict the epitope score.

Including information about the biological unit of the antigen

alters the local structural environment of residues in contact with

neighboring chains in the biological units and hence alters the

prediction score for these residues only. For Ellipro, the situation is

very different. ElliPro defines protrusion on a global scale by

approximating the protein shape to an ellipsoid and assigning a

residue protrusion index from the local deviation from the

ellipsoid. Using such an approach, inclusion of the biological

units will alter the ellipsoidal fit and hence the entire scoring

scheme for all residues not only the once in contact with

neighboring chains in the biological units. Likewise, does the

SEPPA method treats multi-chain inputs as independent queries,

and hence cannot benefit from this additional information.

Examples where the DiscoTope-2.0 method seems to fail

completely are HIV-1 Gp120 core, and Influenza A Hemagglu-

tinine (H3) (AUC,0.50). Both these proteins are glycoproteins

residing on the virus envelope of influenza A and HIV

respectively, and mediates the entrance of viral DNA into the

host cell by binding to host cell surface proteins [28][29].

Glycosylation patterns are not included in the resolved anti-

gen:antibody complexes, and the antibody chosen for complex

formation must hence bind non-glycosylated sites of the antigen to

be able to form the complex structure. This, since glycosylated

sites would be shielded in the in-vivo environment where the

antibody response was raised. In fact, mapping of potential

glycosylation sites (as obtained from Uniprot accession number

P04578 www.uniprot.org) onto the Gp120 structure revealed that

the only non-glycosylated site predicted by DiscoTope-2.0 to be

antigenic, beside part of the antibody-binding site is the alpha-1

helix normally buried in the inner domain of Gp120 involved in

Gp41:Gp120 complex formation (Figure 5) [30]. Mapping of

potential glycosylation sites (as obtained from Uniprot accession

number P03437 www.uniprot.org) onto the Hemagglutine struc-

tures also excludes some of the sites predicted to be highly

antigenic. The most prominent predicted antigenic site of

Hemagglutinine is the active site residing in the ‘head’ region of

the HA1 subunits. This site has been structurally recognized as an

epitope in the PDB entries 3SM5, 2VIR 1KEN and 3LZF and

antibodies binding to this epitope have a higher avidity for

Hemagglutinin than the epitope included in the DiscoTope dataset.

However, the structures were not included in the dataset as the

structures fail the quality threshold of a maximum resolution of

3 Å (3SM5, 2VIR, 1KEN) or were submitted after to the PDB

database after preparation of the DiscoTope dataset (3LZF).

The failed predictions for both Hemagglutinine and Gp120 can

hence to some extent be explained by missing biological data and

incomplete benchmark annotation and in both cases could the
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performance to a very high degree be recovered including

information on glycosylation, the biological unit and other epitopic

sites.

All antigen structures included in the benchmark study

presented here are bound structures. This might to some extent

impact our findings as the epitope area in the bound form of the

antigen deviates slightly from the native form recognized by the

antibody. However, the impact of such subtle structural changes

will mainly impact methods relying on specific structural traits for

prediction (like docking methods) where a significantly higher

prediction performance in general is obtained on bound compared

to unbounded structures. However, previously work (data not

shown), suggests that for methods like PEPITO (BEpro), Epitopia

and Discotope, that all rely on more coarse-grained structural

features there is no different in performance between the bound

and unbound antigen structure. We hence do not expect the issue

to have major impact on results presented in this paper either.

However, it should be noted that the methods EPCES and

EPSVR were developed using primarily unbound antigen

structures, and that the reported performances for these two

methods hence might be underestimated.

In summary, we have described an improved version of

DiscoTope for prediction of discontinuous B cell epitopes. More-

over, we have demonstrated that part of the reason for the

relatively poor performance of state-of-the-art prediction methods

for B cell epitopes can be attributed mostly to the quality of the

benchmark dataset used. Taken together, we believe these

observations underline firstly the importance of curated bench-

mark data sets of properly mapped structural B cell epitopes for

the development and evaluation of methods for B cell epitope

prediction, and secondly that, given such proper benchmark

definitions, state-of-the-art prediction methods for B cell epitopes

do have reliable and highly significant predictive performances.

The updated version of DiscoTope is available at www.cbs.dtu.

dk/services/DiscoTope-2.0.

Materials and Methods

Data preparation
The DiscoTope dataset was used for method development as

previously described [12]. In short; the dataset consist of 75 x-ray

crystal structures of antigen-antibody complexes with a resolution

,3 Å, divided into 25 homology-groups based on antigen

sequence (Table S1). The 25 homology-groups were furthermore

divided into five data sets used for training (4 sets) and evaluation

(1 sets) in a cross-validation scheme. Epitopes were annotated as

any residue in the antigen having atoms within a 4 Å distance to

any atom in the antigen [12][31]. Epitope annotation was

downloaded from http://www.cbs.dtu.dk/suppl/immunology/

DiscoTope and protein structures from the PDB database (www.

pdb.org). The PDB files were further processed into 2 different

files: 1) only containing the chain interacting with the antibody as

original defined in the DiscoTope dataset and 2) PDB files

containing additional structural information on the biological

relevant unit (as described in the publication associated with the

structure) if available (obtainable for PDB entry: 1XIW, 1TZH,

1CZ8, 1BJ1, 1K4D, 1K4C, 1KYO, 1EZV, 1NCA, 1NMC, 1A14,

1NCB, 1NCC, 1NCD, 1OTS, 1AR1, 1NFD, 2HMI, 1EO8,

1QFU). Details about this training data set, and the partition in to

homology groups are listed in Table S1.

An independent evaluation dataset containing proteins not

homologues to proteins in the DiscoTope dataset was constructed

based on 584 PDB structures identified as antigen-antibody

complexes in the IEDB database (http://www.immuneepitope.

org/browse_by_3D.php?name = BCELL). Structure files (PDB

files) were downloaded from the PDB database (www.pdb.org).

Antibody heavy/light chains were automatically identified based

on homology to two databases of antibody heavy and light chains

respectively, from various organisms. Protein chains not identified

as light or heavy chains were initially annotated as antigens. 132

PDB entries containing no protein antigen chain and 42 entries

that did not have both light and heavy chains were discarded. 5

entries containing single-chained antibodies joining light and

heavy chains were included. From the remaining set of 410

antigen-antibody complexes, 52 antigens were retrieved using the

criteria: 1) Structure resolved by x-ray crystallization (405 entries),

2) Size of antigen chain .150 residues (136 entries) and 3) No

sequence similarity overlap to antigens in the DiscoTope dataset

(Blast E-values,0.01). The 52 PDB files were manual processed

into files containing one copy of the biological unit (antibody and

antigen) as described in the PDB entry. Epitope residues in the 52

antigens were annotated as described above for the DiscoTope

dataset, and the antigens were clustered into 33 homology groups

based on antigens sequence similarity. 2 entries were considered

Figure 5. Predictions for Gp120 plotted on the protein structure including bound antibody. Each residue in the structure is colored from
blue to red according to its DiscoTope-2.0 score. Blue indicates low scores (predicted to be non-epitope residue) and red indicates high scores
(predicted to be epitope residue). Yellow indicates possible glycosylation sites retrieved from UNIPROT accession number P04578 (www.uniprot.org).
a) Gp120 surface representation and antibody cartoon representation. b) Gp120 and antibody cartoon representation. Note, the red alpha-1 helix,
which is normally buried in the inner domain of Gp120 involved in Gp41:Gp120 complex formation, is exposed in the crystal structure.
doi:10.1371/journal.pcbi.1002829.g005
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similar if any two antigen chains from the two entries had a blast

value,0.01. Finally, the PDB files were processed into 2 different

files containing: 1) The chains interacting with the antibody and 2)

The biological relevant antigen unit, if available (obtainable for

PDB entry: 3BSZ, 2ZJS, 2XTJ, 2FD6). Details of the evaluation

dataset are given in Table S4 and the data are available at www.

cbs.dtu.dk/suppl/immunology/DiscoTope-2.0.

Derivation of epitope log-odds ratios
Log-odds ratios were calculated as previously described [12]. In

brief: each antigen protein sequence was divided into a list of

overlapping 9-mer peptides by sliding a window on the primary

sequence. Next, the peptides were sorted into an epitope and a

non-epitope group based on the annotation of the center residue.

Amino acid weight matrixes for each group were then calculated

by the method described in Nielsen et al., [24], using sequence

clustering, sequence weighting and weight on pseudo counts of

200. Finally, log-odds ratios for each of the 20 amino acids were

calculated from the central residue position (position 5) in the

epitope weight matrix relative to the same position in the non-

epitope matrix in means of half-bits. Surface corrected log-odds

scores were calculated in a similar manner, by excluding peptides

where the relative surface accessibility (RSA) for the central

residue was below a predefined threshold. RSA thresholds of 0.01,

0.05 and 0.10 were used.

Using log-odds ratios for epitope prediction – Definition
of spatial neighborhood

For prediction of epitope residues, log-odds ratios were used in

combination with a scoring function that sums the ratios of amino

acids in the spatial neighborhood around each residue to give a

log-odds ratio score for each residue in a given protein. Inspired by

the work of Andersen et al., [12] and Sweredoski and Baldi [18],

we defined a scoring function that decreases weight on log-odds

ratios as a function of distance. The function used in the work by

Sweredoski and Baldi [18] uses 5 distance thresholds to gradually

decrease weight on log-odds ratios, which were set empirically to

8, 10, 12, 14, and 16 Å. Here, we designed a simpler function with

a single distance threshold and furthermore included the

smoothing window size w. This parameter was set based on

optimization of sequence-based predictions (w = 9) by Andersen et

al., [12] and adopted by Sweredoski and Baldi. The proximity sum

(PS) function is defined below

PS(r,w,kps)~
X

i

bi
:ls(ri,w)

bi~0:8:(1{(di=kps))z0:2

where r is the query residue for which the log-odds ratio score (PS)

is computed, ri is any residue within kps distance from r, ls(ri,w) is

the log-odds ratio value of ri, sequentially averaged over a window

of w residues and di is the distance between r and ri. To ensure that

log-odds ratios included in the neighborhood sphere influence the

final score, the minimal weight was set to 0.2, which have been

proved successfully in previously similar scoring functions [18]. A

2-dimentional grid search were applied to find the optimal set of

parameters using the grids: w = {1,3…11}, kps = {4,6…28 Å}.

Distance between two resides, were calculated as the distance

between Ca atoms.

Using surface measures for epitope prediction
5 different surface measures, calculated from the protein

structure, were trained and tested for their ability to predict B-cell

epitopes. These were variation of residue contact counts: Full

sphere neighbor count (FS) [12], Upper half-sphere neighbor

count (UHS) [22] and Half-sphere exposure as described in [22]

(HSE) and previously used for B-cell prediction in [18]. A residue

were classified as neighbor to the query residue if the Ca - Ca

distance were below ksur. We furthermore tested the widely used

relative surface accessibility (RSA) [21] and a hybrid between

neighbor count and RSA (Ta) by defining neighbor residues as

residues holding any atom within T distance of any atom in the

query residue. Scoring functions and parameters are listed in

Table S3. Neighbor count in upper and lower half-spheres were

calculated using the structural bio-python module developed by

T. Hamelryck [32], and surface accessibility calculated by DSSP

using the standard 4 Å probe. The RSA were then obtained by

dividing the surface accessibility with the maximum surface

accessibility, calculated from the peptide GGXGG, where X is

the amino acid in question. The optimal sphere radius ksur, for the

FS, UHS, RSA, and HSE, and the distance threshold T for Ta

were estimated by a grid search using the grids;

ksur = {4,6…28 Å} and T = {4,6…28 Å}.

Combining log-odds and surface measure
The log-odds ratio scores were combined to each of the tested

surface measures to give an overall prediction score. The scores

were weighted according to the equation:

DS(r,a)~{a:SS(r)z(1{a):PS(r)

where PS and SS are the log-odds ratio scores and surface scores

described above respectively. Parameters found to optimize

prediction power of surface measures and log-odds ratio scores

individually on each of the 5 training sets were used as inputs and

the optimal values of a found by grid search using the grid:

a = {0.005,0.010…1.0}. As the numerical values of RSA scores

were much lower than the log-odds ratio scores, RSA values were

multiplied by 10 to ensure a smooth optimization curve.

Performance measure
The area under receiver operation curve (AUC) [33] was used

as performance measure. An AUC score is the area under the

curve obtained by varying the prediction threshold and plotting

true positive rate against the false positive rate. The AUC score

were calculated per structure bases, to ensure that predicting all

residues as either epitope or non-epitope residues results in an

AUC score of 0.5. The performance of each homology groups was

measured as the average AUC score of the interacting antigen

chains in the group, and the overall performance as the average

AUC score of the 25 homology-groups as described in [12]. The

performances reported are on evaluation sets (not used for

training).

Correlation between log-odds ratio scores and surface
scores

The correlation between log-odds ratio scores and surface scores

were assessed using the Pearson correlation coefficient (PCC). As

for the AUC scores, a PCC score were calculated for each antigen,

averaged over each of the 25 homology-groups and the overall

correlation was computed as the average PCC of the homology

groups.

Inclusion of multiple epitopes in benchmark
The evaluation procedure for each complex was changed to

accommodate multiple epitopes within each homology groups
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(proteins). Multiple alignments of sequences within each homology

groups were made, and a new AUC score for each of the

complexes were calculated by excluding non-epitope annotated

residues, annotated as epitope in one or more of the other

complexes. The new procedure only affected performance of the

homology-groups in the data sets that contains multiple epitopes

(Table S1 and Table S2).

Prediction by PEPITO
The PEPITO were implemented based on [18] in python. We

compared the prediction values of this script to the output of the

BePro server (http://pepito.proteomics.ics.uci.edu/) for several

different structures and in all cases a perfect correlation (r2 = 1.00)

was observed.

Prediction by ElliPro
The 52 proteins in the evaluation dataset were submitted to the

ElliPro prediction server (tools.immuneepitope.org/tools/ElliPro/

iedb_input) [19]. Clicking the ‘‘Click here to view residue scores’’

button retrieved the residue scores used for performance

evaluation.

Filtering the benchmark dataset for entries used for
training

To avoid overestimation of prediction performance for the

different prediction tools benchmarked here, antigens in the

evaluation dataset were blasted against the individually dataset

used for training the methods and antigens with and

E-values ,0.01 was removed. Refer to supplementary materials

Table S4 and Table S5 for details on which antigens were filtered

for the individual methods. The SEPPA training set was obtained

from: http://lifecenter.sgst.cn/seppa/download.php?id = seppa,

the Epitopia data set from http://www.tau.ac.il/,talp/

EpitopePrediction, the EPCES from [27] and the EPSVR data

from http://sysbio.unl.edu/services/EPSVR/training.tar.gz. PE-

PITO was developed using the DiscoTope dataset and ElliPro is

the webserver implementation of Thornton’s method [23], hence

these two methods have not been trained on any of the structures

in the evaluation dataset.

Prediction by SEPPA
Antigen structures were submitted to the SEPPA prediction

server (http://lifecenter.sgst.cn/seppa/index.php) [26] and the

score files were downloaded and used for evaluation.

Prediction by Epitopia
Antigens were submitted to the Epitopia server: http://epitopia.

tau.ac.il/index.html and the output retrieved. The performance

was evaluated based on the immuniginicity score, which gave

slightly better results compared to the probability score also

provided by Epitopia (data not shown).

Prediction by EPCES and EPSVR
Predictions by EPCES and EPSVR were kindly provided by

Chi Zhang, Assistant Professor at School of Biological Sciences,

Center for Plant Science Innovation, University of Nebraska.

Statistical comparison of performance
A one tailed paired t-test, pairing the different homology-groups

within a given benchmark data set, was used to compare

performances between the different methods.

Defining unique epitopes
Unique epitopes were found using the method described in [34].

In short: Each epitope-paratope interface was translated to a 400

dimensional ‘‘interaction vector’’. The vector holds the frequency

of the interacting amino acids in the epitope and paretope i.e. the

first dimension is assigned the frequency of alanines in the epitope

in contact with alanines in the paratope, the second dimension the

frequency of alanine–valine contacts and so forth. Epitopes with

an angle below 0.8 radians are defined as similar.

Supporting Information

Figure S1 Performance of surface corrected log-odds
scores. 3 new sets of log-odds ratios were calculated by excluding

residues with a relative surface accessibility (RSA) below 0.01, 0.05

and 0.10 respectively (see text). All parameters were retrained as

described in Materials and Methods.

(EPS)

Figure S2 Influence on weight on surface measure when
combined to surface corrected log-odds ratios scores.
The methods were combined with each of the 5 different surface

measures and the weight parameter a were optimized to give the

best prediction performance of the combined methods as

described in Material and Methods. The figure displays the a
value average over the 5 training sets for each of the combined

methods and illustrates that the a value in general increases

concurrently with increase in the RSA threshold for calculating

log-odds ratios. An increase of a means that more weight is put on

surface measures.

(EPS)

Table S1 The DiscoTope data set. The DiscoTope dataset

described in [12] was subject to manual annotation, noting

number of PDB files, number of unique epitopes, protein name

and biological unit for each of the 25 homology-groups. The table

gives the features and performance measure of each entry in the

DiscoTope dataset. Columns from left to right: 1) entry id in the

protein database (PDB). The character after the dot indicates

which chain interacts with the antibody. 2) Indicates to which

homology group the PDB entry belongs. 3) Training partition of

the dataset is used for cross-validation (5 in total, see text). 4)

Protein name. Note, that homology group 3 comprises two

different protein names. Entries for all other homology groups

have the same protein annotation. 5) The in vivo biological unit

that the entry is a part of. 6) Notes on content of PDB files

available. 7) Number of residues comprising the epitope in the

PDB entry. 8) Number of residues available in the PDB file for the

antigen chain interacting with the antibody. 9) The AUC

performance of the DiscoTope method. 10) The performance of

the improved DiscoTope-2.0 method [AUC]. 11) The AUC

performance of the DiscoTope-2.0 method evaluated using a new

benchmark setup (see text).

(PDF)

Table S2 Overview of surface exposure measures.
Different surface measures were tested and trained for their ability

to discriminate epitope from non-epitope residues (for details see

text).

(PDF)

Table S3 Results of cross-validation of surface expo-
sure measures. The data were split in 5 datasets, where 4 were

used for training of parameters and the remaining dataset for

evaluation of surface measure performance. The surface exposure

measures were tested for their ability to predict epitopes, and
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parameters were estimated by a one-dimensional grid search as

described in Materials and Methods.

(PDF)

Table S4 Performance of DiscoTope-1.2, ElliPro, SEPPA,
Epitopia, EPCES, EPSVR, PEPITO and DiscoTope-2.0 on
the evaluation dataset. The table gives the features and

performance measure of each entry in the dataset. Columns from

left to right: 1) entry id in the protein database (PDB). The

character(s) after the dot indicates which chain(s) interacts with the

antibody. 2) Indicates which homology group the PDB entry

belongs to. 3) Antigen names. 4) The in vivo biological unit that the

entry is a part of. 5) Number of residues comprising the epitope in

the PDB entry. 6) Number of residues available in the PDB file for

the antibody interacting antigen chain(s). 7) The performance of the

DiscoTope-1.2 (original) method [AUC]. 8) Performance of the

ElliPro prediction server [AUC] 9) Performance of the SEPPA

prediction method [AUC] 10) Performance of the Epitopia

prediction server [AUC] 11) Performance of EPCES [AUC] 12)

Performance of EPSRV [AUC] 13) Performance of the PEPITO

(BePro) prediction server [AUC], 14) The performance of the

improved DiscoTope-2.0 method [AUC] and 15) The performance

of the DiscoTope-2.0 method evaluated using a new benchmark setup

(see text) [AUC]. Entries with high sequence similarity to data used

for training of the SEPPA, Epitopia, EPCES, and EPSVR methods are

marked with ‘‘used for training’’.

(PDF)

Table S5 Predictive positive value (PPV) and sensitivity
for DiscoTope-2.0, SEPPA, Epitopia and EPCES methods
calculated for the subset of the benchmark dataset not
sharing sequence similarity to the dataset used for
training the different methods.

(DOCX)
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