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Accurate prediction of HLA class II antigen presentation
across all loci using tailored data acquisition and refined
machine learning
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Accurate prediction of antigen presentation by human leukocyte antigen (HLA) class II molecules is crucial for
rational development of immunotherapies and vaccines targeting CD4+ T cell activation. So far, most prediction
methods for HLA class II antigen presentation have focused on HLA-DR because of limited availability of immu-
nopeptidomics data for HLA-DQ and HLA-DP while not taking into account alternative peptide binding modes.
We present an update to the NetMHCIIpan prediction method, which closes the performance gap between all
three HLA class II loci. We accomplish this by first integrating large immunopeptidomics datasets describing the
HLA class II specificity space across all loci using a refined machine learning framework that accommodates in-
verted peptide binders. Next, we apply targeted immunopeptidomics assays to generate data that covers ad-
ditional HLA-DP specificities. The final method, NetMHCIIpan-4.3, achieves high accuracy and molecular
coverage across all HLA class II allotypes.
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INTRODUCTION
Major histocompatibility complex (MHC) class II molecules, also
known as human leukocyte antigen (HLA) class II in humans, are
expressed on the surface of professional antigen-presenting cells
and play a pivotal part in the function of the immune system by pre-
senting antigenic peptides to CD4+ T cells (1, 2). Structurally, these
molecules are heterodimers consisting of α and β chains encoded by
three different loci (HLA-DR, HLA-DP, and HLA-DQ) that are
among the most polymorphic genes in the human genome (3).
The majority of these polymorphisms are clustered around the
peptide binding domain formed by the α and β chain, giving rise
to a broad range of peptide binding specificities (4).

While in HLA-DR, polymorphic variation is primarily defined
by the β chain, in HLA-DP and HLA-DQ both α and β chains
display polymorphism. Additional diversity can be provided by
cis- and trans-dimerization, whereby distinct HLA-DP and HLA-
DQ heterodimers are formed with α and β chains either encoded
on the same chromosome (referred to as “cis”) or the opposite chro-
mosomes (referred to as “trans”). Although the expression of trans-
encoded HLA class II molecules has been confirmed by previous
studies (5), evidence suggests that not every α and β chain pairing
forms a stable heterodimer (6, 7).

Among all HLA class II molecules, DRB1 molecules have been
investigated most extensively because of their established associa-
tion with different conditions such as autoimmune disorders in
particular (2), as well as cancer (8–10) and infectious diseases
(11–13). The significance of other class II alleles (HLA-DRB3, 4,
and 5; HLA-DQ; and HLA-DP) has been largely overlooked
because of their relatively lower expression level and the strong

linkage disequilibrium (LD) between these alleles and the corre-
sponding HLA-DRB1, which has overshadowed the role these mol-
ecules play in disease susceptibility or protection and their
contribution to HLA class II antigenic landscape. However, recent
works have demonstrated the importance and function of these
molecules in autoimmune diseases (1, 14–16) and transplantation
(17–19) at both HLA expression and antigen presentation level
that was previously underappreciated.

The HLA class II immunopeptidome of different antigen-pre-
senting cells is inherently a complex mixture of peptides presented
by HLA-DRB1, 3, 4, and 5; HLA-DQ; and HLA-DP. Given the dis-
tinct roles, these alleles play in the course of disease progression and
treatment; using a method that can accurately predict antigen pre-
sentation across all HLA class II loci and reliably deconvolute the
complete HLA class II immunopeptidome is of utmost importance
for resolving the function of each of these molecules. To accomplish
this, it is necessary to integrate large-scale, high-quality datasets
covering a wide variety of class II molecules and their specificities.

Over the past decade, large immunopeptidome datasets have
been acquired by liquid chromatography coupled with mass spec-
trometry (LC-MS/MS) (20–22). These data, often referred to as
eluted ligand (EL) data, contain signals from different steps of
HLA class II antigen presentation, such as antigen digestion, HLA
loading of ligands, and transport to the cell surface. Hence, they
have served as an essential means to enhance our understanding
of the rules governing antigen processing and presentation and
the development of in silico methods for prediction of HLA class
II antigen binding and presentation (4, 23–25). Historically, most
immunopeptidomics datasets have been generated by applying
HLA-DR–specific antibodies followed by pan–HLA class II anti-
bodies during the affinity purification step before the MS sequenc-
ing. In this approach, HLA-DR molecules are purified from the cell
or tissue lysate using the HLA-DR–specific antibody while the pan–
HLA class II antibody is applied as a means to capture the remain-
ing class II molecules (HLA-DP and HLA-DQ) of the sample (23,
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26). However, pan–HLA class II antibodies have demonstrated a
rather poor specificity toward both DP and DQ (23, 25) and
thereby an overall very low peptide yield for these loci. This has ul-
timately led to very few datasets describing DQ and DP molecules,
resulting in subpar characterization of the role and rules for HLA
class II antigen presentation for these molecules. Furthermore,
despite the early focus on DR in immunopeptidomics assays,
most studies have until recent years ignored the relevance of
DRB3, 4, and 5. This meant that only DRB1 alleles were included
in HLA typings of most samples used in immunopeptidomics
assays. However, Kaabinejadian et al. (24) recently showed that
DRB3, 4, and 5 have a substantial role in defining the DR ligan-
dome, which underlines the importance of using full HLA
typings to accurately characterize the immunopeptidome across
HLA class II molecules (24).

A large variety of methods have been proposed for prediction of
HLA class II antigen presentation [earlier methods are reviewed in
(27) and recent methods include (25, 28, 29)]. The vast majority of
these are trained on MS-immunopeptidome data. A critical chal-
lenge associated with the interpretation and analysis of this type
of data is the fact that the data most often is multi-allelic (MA),
meaning that each peptide in a given dataset can originate from
the set of possible HLA molecules expressed in the given sample.
This is in contrast to single-allelic (SA) data, e.g. binding affinity
data or EL data derived from monoallelic cell lines, in which all pep-
tides originate from only one HLA molecule. Therefore, interpreta-
tion and characterization of MA data require sorting the peptides
into their most likely HLA restriction, a procedure known as
motif deconvolution. Several methods have been proposed for
this including MoDec (23) and NNAlign_MA (30). While achieving
overall highly comparable results, the two methods differ funda-
mentally in how the motif deconvolution task is performed.
MoDec performs the motif deconvolution in a per-dataset
manner, challenging the identification of minority motifs charac-
terized by limited peptide count. In contrast, NNAlign_MA per-
forms the motif deconvolution in a pan-specific manner,
leveraging information across all datasets, allowing us to boost the
deconvolution accuracy for such minority motifs in situations
where they are shared between multiple samples. This has been
demonstrated to result in overall superior performance both in
terms of the identified number of motifs and annotated peptides
during motif deconvolution (30, 31).

Applying the NNAlign_MA framework, we have, in recent
papers, demonstrated how the generation of high-quality MS
HLA elution datasets combined with powerful and tailored
machine learning frameworks can allow us to make profound ad-
vances within both the accuracy for prediction and fundamental
understanding of the rules defining HLA class II antigen presenta-
tion. These advances include a transformed view on the contribu-
tion of the HLA-DR3, 4, and 5 molecules in the overall HLA-DR
immunopeptidome (24), a confirmation of earlier proposed rules
for pairing of HLA-DQA and HLA-DQB chains into functional
molecules that greatly limit the diversity of the HLA-DQ functional
space (25), and improved predictive accuracy and molecular cover-
age for both the HLA-DR and HLA-DQ loci.

In terms of the third HLA class II locus, HLA-DP, there have
been major advances recently in the characterization of binding
motifs. For example, van Balen et al. (32), who generated extensive
datasets of eluted HLA-DP ligands, observed a binding motif for

HLA-DPB1*05:01, which could be clustered into two separate
motifs sharing a mirror symmetry. On the basis of this, they hypoth-
esized that for this molecule, peptides can bind both in a canonical
(N- to C-terminal) and inverted (C- to N-terminal) orientation.
This inverted binding mode was later confirmed experimentally
in independent studies (28, 33). In the context of T cell epitope pre-
diction, Racle et al. (28) showed in a recent publication that by in-
corporating inverted binding prediction into their MixMHC2pred
method, they were able to identify several epitopes bound inverted
to DPA1*02:01-DPB1*01:01, which elicited a CD4+ immune re-
sponse. This illustrates the importance of taking into account the
different binding modes of HLA ligands when developing antigen
presentation prediction methods.

However, despite these important advances, the accuracy of pre-
dictive methods for HLA class II antigen presentation, particularly
for HLA-DP, remains low compared to that of HLA class
I. Furthermore, it remains unclear to what degree current
methods and datasets cover the set of prevalent and relevant HLA
class II molecules and if there are still gaps remaining in our char-
acterization and understanding of HLA class II binding specificities.

Here, we seek to address these issues by first closing the perfor-
mance gap between DR and DQ/DP by integrating large high-
quality immunopeptidomics datasets covering all three loci into
the NetMHCIIpan machine learning framework and applying an
updated version of NNAlign_MA that incorporates prediction of
the peptide binding mode (forward versus inverted) into the
method training. Using this method, we investigate the predictive
performance across HLA-DR, HLA-DQ, and HLA-DP, and how
prediction of the inverted binding mode affects the motif deconvo-
lution. Next, we seek to expand the HLA coverage of the developed
method by tailored data generation. For this purpose, we apply the
developed machine learning model to identify HLA-DP molecules
potentially missing from the covered specificity space. Next, we gen-
erate high-quality MS datasets for these molecules and illustrate
how such tailored data generation improves coverage of the HLA
class II specificity space.

RESULTS
In this study, we set out to complete the journey of characterizing
the rules of and developing prediction methods for HLA class II
antigen presentation. To achieve this, we first compiled a compre-
hensive immunopeptidomics dataset, integrating the training data
for the NetMHCIIpan-4.2 method including DQ-specific immuno-
peptidomics data covering 14 HLA-DQ molecules (25) with DP-
specific data from van Balen et al. and related studies covering 19
HLA-DP molecules (32–34), along with additional data for HLA-
DR (24) and BoLA-DR (see table S1 for more information on all
the included datasets) (35). Figure 1A gives an overview of this com-
bined dataset in terms of the SA and MA data categories, illustrating
that the majority of the training data are derived from MA datasets.
Furthermore, Fig. 1B displays the number of SA and MA datasets
per locus, showing that the inclusion of the DP data from van Balen
and colleagues (32–34) (termed “Balen_DP” from here on) gives
HLA-DP a similar number of SA datasets to HLA-DR. The low
number of SA datasets for HLA-DQ should be seen in light of the
large number of DQ-specific MA datasets from NetMHCIIpan-4.2.

A key difference between the DQ- and DP-specific datasets and
most prior immunopeptidome data available is that the former were
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generated using DQ- and DP-specific antibodies during the immu-
noprecipitation step before the MS/MS sequencing step, as de-
scribed in the introduction. This is in contrast to earlier datasets
where pan–HLA class II antibodies were applied in most cases, re-
sulting in low peptide yield for DQ and DP due to the pan–HLA
class II antibodies’ poor specificity toward these loci. This scenario
changed drastically when anti–HLA-DP and anti–HLA-DQ specific
antibodies were applied. In Fig. 1 (C and D), we give examples illus-
trating this. Here, the fraction of peptides assigned to DR, DP, and
DQ in HLA motif deconvolutions is shown for two samples: One
sample was handled using the conventional two-step immunopre-
cipitation pipeline where, first, a pan-DR antibody is applied fol-
lowed by a pan–class II antibody, and the second was handled
using individual DR, DQ, and DP locus-specific antibodies.
Figure 1C illustrates the poor DP and DQ specificity of the pan–
class II antibody resulting in very low peptide yield for these two
loci. In contrast, Fig. 1D demonstrates how this limitation is re-
solved when applying the three locus-specific antibodies.

Using this expanded data with highly increased peptide yield for
DP (and DQ), we trained prediction models for HLA antigen pre-
sentation using the NNAlign_MA framework earlier proposed for
handling machine learning on MS HLA elution dataset from HLA
heterozygous samples, and multilocus HLA expression (30). Before
model training, the MS data were processed and enriched with ar-
tificial random natural negative peptides (as described in Materials
and Methods). To accommodate the inverted binding mode recent-
ly observed for some DP molecules (28, 33), we used a modified

version of the NNAlign_MA machine learning framework (see
fig. S1), which includes an option to simultaneously predict both
the binding core offset and the orientation (forward or inverted)
of the peptide ligands (for details on the implementation, refer to
Materials and Methods). We next trained three initial prediction
models to investigate the impact of the Balen_DP data: one
without the data and without peptide inversion (wo_Balen_DP),
one with the data and without peptide inversion (w_Balen_DP),
and one with the data using peptide inversion (w_inversion).
These methods were then evaluated using cross-validation on a
per-molecule and per-sample basis.

Performance impact of DP data and inverted binding mode
We assessed the predictive performances using three metrics,
namely, area under the receiver operating characteristic (ROC)
curve (AUC), area under the ROC curve integrated up to a false pos-
itive rate of 10% (AUC 0.1), and positive predictive value (PPV) (for
more details refer to Materials and Methods). To illustrate how in-
corporation of the Balen_DP data affected the prediction of HLA
class II antigen presentation, we first compared the performances
of the two methods trained without peptide inversion (Fig. 2A).
For non-DP molecules, a significant increase in AUC was observed
in favor of the method with the Balen_DP data (N = 84, P < 0.05,
one-tailed binomial test without ties), although both methods had
overall similar performance across all metrics. This suggests that the
information contained in the Balen_DP data has a limited impact
on the method’s learning of other loci’s specificities. On the other

Fig. 1. Overview of immunopeptidomics datasets used in the study. (A) Total peptide count for SA and MA data (left y axis), along with distribution of peptide count
per SA and MA dataset (right y axis). (B) Number of SA and MA datasets per MHC class II locus in the training data. Here, H-2 and BoLA refer to the MHC class II loci in mice
and cattle, respectively. (C) Peptide annotation fractions toward DR, DP, and DQmolecules in the motif deconvolution of our final method for the Racle__CD165 dataset.
Two samples are shown: one generated with a DR-specific antibody and one with a pan–HLA-II antibody. (D) Peptide annotation fractions toward DR, DP, and DQ mol-
ecules in themotif deconvolution of our final method for the IHW09063 dataset. The fractions are shown for samples generatedwith DR-, DP-, and DQ-specific antibodies.
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hand, a significant performance increase for the method including
these data was observed for DP in all metrics (N = 26, P < 0.001 in all
metrics, one-tailed binomial tests without ties).

When next investigating the model trained including peptide in-
version (Fig. 2A), the method achieved similar overall performance
on non-DP molecules compared to the other methods, indicating
that the updated machine learning framework is able to maintain
accuracy across all loci. Furthermore, we found a significant perfor-
mance increase for DP in all metrics when comparing with the
method without inversion including the Balen_DP data (N = 26,
P < 0.05 in all metrics, one-tailed binomial tests without ties).
Looking at the performance per sample in the Balen_DP data of
the methods trained with these data (Fig. 2B), the model with inver-
sion also had significantly improved performance across all three
metrics (N = 34, P < 0.02 in all cases, one-tailed binomial tests

without ties). This demonstrates that the use of peptide inversion
during training has allowed for an improved identification of
ligands in the Balen_DP data.

To further quantify this, we next investigated the ligands anno-
tated toward DP across the three methods and visualized their over-
laps as a Venn diagram in Fig. 2C. Overall, a total of 163,604
peptides were annotated toward DP with a percentile rank below
20 by at least one of the three methods (the threshold commonly
applied to discard HLA irrelevant “contaminants”). Of these,
127,190 (78%) were predicted by all three methods. From the re-
maining annotations, 26,543 (72%) were predicted only by the
two methods including the Balen_DP data, indicating a highly en-
riched identification of DP ligands in these methods. Investigating
the annotations of these 26,543 peptides in the method without the
Balen_DP data, the vast majority (~89.5%) were annotated as trash

Fig. 2. Impact of HLA-DP data and inverted binding prediction on predictive performance. Three methods are compared, namely, the method without the
Balen_DP data (wo_Balen_DP), the method with the Balen_DP data (w_Balen_DP), and the method including the Balen_DP data trained with peptide inversion (w_in-
version). (A) Performance calculated per HLA molecule. The rows correspond to the AUC, AUC 0.1, and PPV performance. The columns correspond to all non-DP mol-
ecules (NotDP, N = 84) and all DP molecules (DP, N = 26). (B) Performance per sample in the Balen_DP data for the twomethods trained with these data (N = 34). (C) Venn
diagram of shared and unique DP ligand annotations in the three methods. Results of one-tailed binomial tests are shown in (A) and (B), with arrowheads indicating the
direction of the tests (*P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001; ns, not significant).
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with percentile rank greater than 20, while 6.1% and 4.4% were an-
notated toward DR and DQ, respectively. In terms of the 3500
uniquely identified DP ligands in the method with inversion,
around 61% was annotated as trash in the other two methods.
When only considering the ligands that were predicted to bind in-
verted (1431 of 3500), the percentage of trash annotations in the
methods without inversion was increased to 73 and 74% in the
models with and without the Balen_DP data, respectively. These
results indicate that by considering inversion, our method
“rescues” a large proportion of ligands that would otherwise be pre-
dicted as nonbinders.

Inverted binding motifs
Next, we investigated the presence of inverted peptides across the
different HLA class II molecules. Here, the cross-validated predic-
tions from the model trained including inversions were used, and
peptides with percentile rank greater than five were discarded to
focus the analysis toward highly confident binders. To further
reduce the number of noisy annotations for a given molecule, we
only included peptides from samples in which at least 5% of the
peptides were annotated toward a given locus and where the mole-
cule had at least 5% of that locus’ annotations. Figure 3A gives the
result of this analysis and shows the distribution of the percentage of
inverted peptides across HLA molecules in the different loci. From
this, we find that peptide inversion happens almost exclusively for
HLA-DP. When looking at the inversion percentage per DP mole-
cule (Fig. 3B), we see that all the molecules with at least 5% peptide
inversion have either DPA1*02:01 or DPA1*02:02 as α chain. Fur-
thermore, the remaining molecules with only a limited proportion
of inverted ligands (less than 5%) all share the same DPA1*01:03 α
chain. This suggests that the HLA-DP α chain, although bearing a
limited specificity-determining role (see later), is the major deter-
minant for the acceptance of the inverted peptide binding mode.
These observations are in alignment with recent studies (28, 33),
which have shown that widespread inversion of peptide binders is
only observed for DP and only for DP molecules with certain α
chains (namely, DPA1*02:01 and DPA1*02:02). Although mole-
cules with DPB1*03:01 have not been observed in previous
studies to have inverted binders (32), our method predicts a
sizable percentage (~8.1%, 83 of 1029 peptides) of inversions for
DPA1*02:01-DPB1*03:01.

To illustrate the improved DP motif deconvolution by consider-
ing inverted peptides, sequence logos for DPA1*02:02-DPB1*05:01
and DPA1*02:02-DPB1*19:01 were shown for the models trained
with and without inversion in Fig. 3C. Here, the peptides for the
method without inversion were filtered as described above. We
observe that for the method without inversion, the identified
motifs are mirrored around the central position, with the K and R
being present at both P1 and P9. In contrast, for the method with
inversion, the motifs take into account the dual binding mode, re-
sulting in more clear motifs with the K and R preference being
present only at P1.

Correlation between deconvoluted and predicted motifs
We next investigated the 19 HLA-DP molecules in the Balen_DP
data in terms of correlation between the binding motifs obtained
from motif deconvolution and the predicted motifs based on
random natural peptides to assess to what degree the trained
models were capable of learning the individual binding motifs in

the MS elution data. Such an analysis is essential because motif de-
convolution could appear accurate because of the nature of the task,
i.e., placing peptides into a fixed set of buckets, but without the as-
sociated prediction model having learned the associated motifs. An
example of this is shown in Fig. 4A for the molecule DPA1*02:01-
DPB1*01:01. Here, the motifs from the deconvolution of the input
data for the different models are all in overall high agreement.
However, when looking at the predicted motifs estimated on the
basis of the top 1% of 100,000 random natural peptides, the
model trained without the Balen_DP data completely fails to
learn the correct motif. Moreover, the method with inversion
achieves the highest concordance between predicted and observed
motifs, as it can position the “K” at P1 instead of P9 for the peptides
predicted to bind inverted in the motif deconvolution.

To further quantify this, for each of the three prediction methods
described earlier, we constructed position-specific frequency matri-
ces (PSFMs) for each molecule in the Balen_DP data based on the
cross-validation predictions across all samples in the Balen_DP data
and from the top scoring random natural peptides as described
above. Then, for each method, the two-sided Kullback-Leibler di-
vergence (KLD) between the PSFM from the motif deconvolution
and the corresponding predicted motif PSFM was then calculated
(for details on this metric refer to Materials and Methods). This
KLD metric can be interpreted as a “distance” between the
binding motifs of two molecules, where lower values indicate
more similar motifs. The result of this analysis is shown on
Fig. 4B, illustrating that the model trained without the Balen_DP
data has significantly higher KLD between the observed and pre-
dicted motifs when compared to the other methods (N = 19, P =
5.2 × 10−6 and P = 8.4 × 10−7, paired two-sided t tests). Further-
more, the model including inversion has significantly lower KLD
values than the method without inversion (N = 19, P = 0.0077,
paired two-sided t tests). An outlier is observed for all three
methods, which corresponds to the molecule DPA1*02:01-
DPB1*04:01. This molecule is only present in MA samples of the
training data and was found to have consistently low peptide
counts in all DP-heterozygous datasets, leading to motifs of lower
quality compared to the remaining molecules (see more on
this later).

Determinants of HLA-DP specificities
In contrast to HLA-DQ, where previous studies have shown that
certain α and β chain combinations cannot form stable hetero-
dimers because of structural constraints (25, 36), to our knowledge,
no such constraints have been described for HLA-DP. Thus, for
HLA-DP, any α and β chain can, in principle, pair to form a
stable heterodimer. In light of this, we next investigated the
motifs of DP-annotated peptides in DP-heterozygous samples for
the model trained with peptide inversion. Here, HLA irrelevant
“contaminant” peptides with percentile rank greater than 20 were
removed. Figure S2 shows the DP sequence logos obtained from
motif deconvolution of these samples. Here, we observe, in most
cases, a similar motif for molecule pairs with the same β chain,
which suggests that DP specificity is primarily driven by the β
chain alone. To quantify this, we calculated the KLDs between the
PSFMs of molecules sharing either the same α or β chain within
each heterozygous sample and plotted the distribution of KLDs
for the two groups (shown in fig. S3). From this analysis, the mol-
ecules with the same β chain were found to have significantly lower
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Fig. 3. Peptide inversion enables accurate DPmotif deconvolution. (A) Proportion of peptide inversion across MHC class II loci. (B) Proportion of inverted peptides per
HLA-DP molecule. (C) Identified sequence motifs of HLA-DPA1*02:02-DPB1*05:01 and HLA-DPA1*02:02-DPB1*19:01 for the methods trained without and with peptide
inversion.
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KLDs than the molecules with shared α chains (N = 27 motif pairs in
each group, t = 3.93, P = 0.0003, two-sample unpaired t tests). This
indicates that the β chain is the primary specificity defining element
for DP molecules, with the α chain having a secondary role in terms
of defining the given molecule’s ability to accommodate inverted
peptide binders as described earlier.

Molecular coverage of HLA-DP
Given the increased predictive power of HLA class II achieved
through integration of DP-specific immunopeptidomics data, we
next wanted to investigate the molecular coverage of the models
for HLA-DP. For this purpose, we focus only on the method
trained without the Balen_DP data and the method trained with in-
version including these data. First, we assessed for each method how
many DP molecules were properly covered by the training data.
Here, for each molecule, the data were filtered as described earlier
by only including peptides with percentile rank less than 5 and only
considering samples with at least 5% of annotations toward the DP
locus and where the molecule received at least 5% of the locus’

peptides. Molecules with at least 50 peptides across all its included
samples were then said to have peptide coverage. Here, the method
without the Balen_DP data had peptide coverage of 13 DP mole-
cules, while the method with these data had an increased coverage
of 24 DP molecules.

Then, a functional coverage was estimated by considering the
proportion of a reference set of DP molecules found within a dis-
tance of at most 0.05 to the molecules with peptide coverage. Briefly,
this reference set was constructed by querying the Allele Frequency
Net Database (37) for DP haplotype frequency data, resulting in a
set of 167 DP haplotypes. The distance was here defined from the
similarity between the HLA pseudo-sequences (see Materials and
Methods), and the threshold of 0.05 was estimated on the basis of
the distance at which the model trained without the Balen_DP data
could reach optimal performance when evaluating on molecules not
part of the method’s SA training data (fig. S4).

From this analysis, a significant increase in functional DP cover-
age was found (P < 0.0004, chi-square test), corresponding to 116 of
167 compared to 82 of 167 covered molecules for the methods with

Fig. 4. Correspondence between observed and predicted motifs. (A) Motif deconvolution and predicted logos for DPA1*02:01-DPB1*01:01. The rows correspond to
logos based on either the cross-validation predictions on the Balen_DP data (From data) or the top 1% of predictions on 100,000 random natural peptides (Predicted). The
columns correspond to the methods trained without the Balen_DP data (wo_Balen_DP), with the Balen_DP data (w_Balen_DP), and with the Balen_DP data including
peptide inversion (w_inversion). For the motif deconvolution logos, predicted contaminant peptides with percentile rank greater than 20 were excluded, and peptide
counts are shown in parentheses above each logo. (B) KLD values between PSFMs obtained frommotif deconvolution and prediction with random peptides as described
above. Each point corresponds to a DPmolecule from the Balen_DP data. The stars indicate the results from paired two-sided t tests (N = 19; **P < 0.01 and ****P < 0.0001).
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and without the Balen_DP data, respectively. Using the set of func-
tionally covered molecules in each method, we next estimated the
DP population coverage by summing their haplotype frequencies.
Here, the method without the Balen_DP data had a DP population
coverage of ~61%, while the method with the Balen_DP data had a
population coverage of ~91%, indicating a highly boosted coverage
as a result of including these data.

Next, using the method with inversion, we constructed a DP spe-
cificity tree based on the MHCCluster approach (38). Briefly, the list
of 167 prevalent DP molecules was reduced to a list of 95 molecules
with unique specificities based on the pseudo-sequence (39). Then,
distances between molecules were estimated on the basis of corre-
lations between prediction scores of a large set of random natural
peptides, resulting in the tree shown in Fig. 5. Investigating the
tree, we observe that the model had an overall wide coverage of
the different DP specificities, with most branches having at least
one molecule with peptide coverage (molecules with at least 50 con-
fident peptide annotations). However, a few branches were found
with poor coverage. One such branch includes DPA1*02:01-
DPB1*04:01, for which the motif had not been learned properly
by the prediction methods as described earlier. This molecule was
present in seven samples in the training data, all of which are DP-
heterozygous. In all of these samples, this molecule was assigned less
than 5% of the DP annotations, resulting in an effective peptide
count of 0 (see above). This lack of peptide annotations can either
be biological or simply a result of the method not having learned the
molecule’s specificity due to lack of high-quality data for this
molecule.

Another example molecule with poor peptide coverage is
DPA1*01:03-DPB1*16:01, which was only part of (homozygous)
datasets by Nilsson et al. (25) and Kaabinejadian et al. (24) purified
with DQ- and DR-specific antibodies, respectively, resulting in low
yield of DP ligands. Therefore, analyzing this cell line with a DP-
specific antibody during the purification process could potentially
increase the amount of peptides covering this molecule substan-
tially. Furthermore, we looked into the molecules in the tree that
were not covered either by at least 50 high-confidence peptides or
had a distance greater than 0.05 to the molecules with peptide cov-
erage, yielding a set of 40 noncovered molecules. From these, the
molecule with the highest haplotype frequency as identified from
the Allele Frequency Net Database was DPA1*02:02-DPB1*02:02.
This molecule was found at high frequency among Asians, while
it was rare in other populations, resulting in a worldwide population
frequency of 2.5%.

On the basis of the above analyses, we next generated MS-immu-
nopeptidomics data using a DP-specific immunoprecipitation
method from DP-homozygous cell lines expressing DPA1*01:03-
DPB1*16:01, DPA1*02:01-DPB1*04:01, and DPA1*02:02-
DPB1*02:02 (for more information on these data refer to Materials
and Methods). The total number of peptides eluted from these cell
lines, considering all 10- to 25-mer peptides identified at 1% false
discovery rate, was 2423, 1797, and 2428 peptides, respectively.
After filtering the datasets to remove posttranslational modifica-
tions and eliminating redundant peptides, the number of unique
12- to 21-mer peptides in each sample was reduced to 1550, 1259,
and 1502, respectively, which were then used to retrain the method
with inversion (enriched with random negatives generated as for the
other datasets as described in Materials and Methods), to assess

their impact on the DP motif deconvolution and molecular
coverage.

Analyzing the test-set predictions on these samples, the re-
trained method was able to annotate 678 (53.8%), 715 (47.6%),
and 1062 (68.5%) peptides with percentile rank less than 20
toward DPA1*02:01-DPB1*04:01, DPA1*02:02-DPB1*02:02, and
DPA1*01:03-DPB1*16:01 from each of the individual datasets, the
motifs of which are shown in Fig. 6A. The remaining peptides were
coeluted peptides predominantly assigned to HLA-DR and HLA-
DQ (fig. S5). A high percentage of inverted binders was predicted
for DPA1*02:02-DPB1*02:02 (25.3%), with the inverted peptides
having a preference for histidine at P4 (Fig. 6B). Furthermore, the
length distributions of the DP-annotated peptides were compared,
confirming a normal distribution with a preference for 15-mer pep-
tides, in agreement with the length preference for most HLA class II,
including other DP, molecules (Fig. 6C).

Comparing the models trained with and without including these
datasets revealed as expected an increased number of DP molecules
with peptide coverage (27 compared to 24), resulting in an expand-
ed functional coverage corresponding to 131 of 167 DP molecules
(compared to 116 of 167 for the earlier model) and an expanded
population coverage of 96% as illustrated in Fig. 6D. Furthermore,
fig. S6 displays the DP specificity tree for the final retrained method,
showing wide coverage of the specificity space as almost all branches
have molecules with either peptide coverage or a distance less than
0.05 to a peptide-covered molecule.

Comparing motif deconvolutions before and after
including additional DP data
When investigating the motif deconvolution of the datasets describ-
ing DPA1*02:01-DPB1*04:01, we saw a large increase in peptides
annotated toward this molecule in the model trained with the addi-
tional data as expected (1268 total annotations across all datasets in
the retrained method compared to 121 in the previous method).
Furthermore, the motifs obtained for this molecule in the heterozy-
gous samples are generally consistent with the motif identified in
the additional dataset covering DPA1*02:01-DPB1*04:01 (fig. S7).
However, despite this increase in annotations toward
DPA1*02:01-DPB1*04:01 and its improved motif consistency, this
molecule still had very low contribution in all eight DP-heterozy-
gous datasets containing it (median DP annotation percentage
was 4.5%; see fig. S8, A and B). In comparison, molecules with a
similar overall peptide annotation count across all datasets in the
cross-validation, such as DPA1*02:01-DPB1*03:01 and
DPA1*01:03-DPB1*14:01, had much higher contributions.

Another molecule with highly similar behavior is DPA1*02:02-
DPB1*04:01, which was found to have very limited DP annotation
contribution (4.2%) in the heterozygous dataset Racle__PD42.
Comparing this molecule with DPA1*02:01-DPB1*04:01, they
were found to have identical pseudo-sequences except for one
amino acid variation in the α chain. Given that the DP β chain
was observed to be the main determinant of binding specificity as
described earlier, we would thus have expected that incorporating
additional data for DPA1*02:01-DPB1*04:01 in the training
would have aided the deconvolution also toward this molecule.
This was however not the case. These findings suggest that both
DPA1*02:01-DPB1*04:01 and DPA1*02:02-DPB1*04:01 are
poorly functional molecules, which results in these molecules’
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Fig. 5. HLA-DP specificity tree. Orange molecules have peptide coverage corresponding to at least 50 high-confidence ligands. Branches shaded in red correspond to
noncovered specificities. Logos in red frames correspond to the identified noncovered molecules that would benefit from additional data.
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Fig. 6. Integration of additional DP data yields improved molecular coverage. (A) Identified motifs in the DP-specific datasets for DPA1*01:03-DPB1*16:01,
DPA1*02:02-DPB1*02:02 (shown as a combined logo), and DPA1*02:01-DPB1*04:01. (B) The motif for DPA1*02:02-DPB1*02:02 shown as two logos corresponding to
the forward and inverted binders. (C) Length distributions of the peptides annotated toward the three DP molecules (D) Counts and population coverage of molecules
covered either by at least 50 high-confidence ligands (MS coverage) or by pseudo-sequence distance (Functional coverage) for themethod trained without the Balen_DP
data (Without Balen DP), with the Balen_DP data (With Balen DP), and the final method trainedwith the additional DP datasets generated in this study (Final method). The
left y axis corresponds to the blue bars showing the molecule counts, and the right y axis corresponds to the orange bars showing the population coverage numbers.
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limited contribution to the immunopeptidome in their given
cell lines.

Impact of context encoding
Earlier work has demonstrated that incorporation of signals of
antigen processing identified from residues flanking a given
peptide sequence into the training of prediction models for
antigen presentation results in substantial boost in performance
(40). This form of peptide context has been incorporated into
several prediction methods such as NetMHCIIpan and
MixMHC2pred [for details on how peptide context is integrated
in the NetMHCIIpan method refer to (40)]. However, these
works have primarily been focused on HLA-DR, and thus, the
impact of context encoding for DP and DQ has until now not
been fully elucidated. To investigate the impact of context encoding
across all three HLA class II loci, we retrained the method with in-
version including peptide context. Here, we observed a significant
performance increase for the method with peptide context across all
three HLA-II loci and performance metrics (N = 42, N = 28, and N =
32 for DR, DP, and DQ, respectively; P < 2.0 × 10−6 in all cases, one-
tailed binomial tests), with HLA-DQ demonstrating the largest im-
provement (3.5, 9.4, and 5.8 percentage point increase in AUC,
AUC 0.1, and PPV, respectively; see fig. S9).

Rediscovering previous findings for DR and DQ
Given the broad coverage of HLA class II specificities in the training
data of the final method, we wanted to take a step back and also
analyze the method’s predictions for HLA-DR and HLA-DQ.
More specifically, for HLA-DR, we wanted to investigate the relative
contribution of DRB3, DRB4, and DRB5, and for HLA-DQ, the
contribution of cis and trans heterodimers in shaping the DQ ligan-
dome, both of which have been elucidated in recent studies by Kaa-
binejadian et al. and Nilsson et al., respectively (24, 25). In line with
these studies, we first looked into the contribution of DRB3, 4, and 5
relative to DRB1 in samples with DRB1 and at least one secondary
DR molecule. We did this by plotting the per-dataset distribution of
DR peptide annotation fractions for each pair of molecules (i.e.,
DRB1 versus DRB3, DRB1 versus DRB4, and DRB1 versus
DRB5). The result can be seen in fig. S10A, indicating that in
samples with both DRB1 and DRB5, DRB5 had an overall high
peptide contribution (median peptide fraction is 0.31). On the
other hand, DRB4 had the lowest contribution, while DRB3 had
less consistent contribution in agreement with the more polymor-
phic nature of the DRB3 gene compared to DRB4 and DRB5 (41,
42). These results align well with the findings by Kaabinejadian
et al. (24), once again illustrating the importance of including the
full HLA-DR typing during motif deconvolution to accurately char-
acterize the DR ligandome.

Furthermore, we analyzed the motif deconvolution of DQ-het-
erozygous datasets and the role of HLA-DQ ɑ and β chain pairing in
shaping the immunopeptidome. A reference list of DQɑ and DQβ
chain heterodimers observed as haplotypes (36) was used to define a
set of DQ molecules referred to as cis (see Table 1). Any other com-
bination not observed as cis was referred to as “trans-only.” Then,
for each DQ molecule in the heterozygous samples, we plotted the
average per-dataset peptide annotation fraction, which is shown in
fig. S10B. Here, in line with the findings by Nilsson et al. (25), we
found that trans-only combinations had consistently low contribu-
tion in all DQ-heterozygous datasets, with a significantly higher

contribution of cis variants found in DQ-MA datasets compared
to trans-only variants (N = 18 and N = 12 for the two groups, t =
3.07, P < 0.005, two-sided unpaired t tests). However, we observed
that cis variants present in DQ-SA datasets had an overall higher
contribution than cis variants present in DQ-MA datasets, indicat-
ing a potential bias toward these molecules.

While we cannot completely rule out that this bias toward the
DQ-SA training data might have an impact on the method’s
ability to annotate peptides to trans-only variants, our results are
in perfect agreement with rules governing HLA-DQ αβ trans-
pairing, which is dictated by the stability of the resulting hetero-
dimer. Specifically, the rules indicate that structural constraints
do not favor dimerization of DQA1*01 with DQB1*02, 03, and 04
alleles, all trans-only combinations, resulting in their lack of stabil-
ity, inefficient assembly, and, therefore, loss of function (7, 36).

HLA class II mega-tree
We next estimated the final model’s coverage of HLA-DR and HLA-
DQ in a similar way to that of DP. A representative set of 123 DR
molecules was retrieved from the IPD-IMGT/HLA database (see
Materials and Methods) (43), and for these, we used the Allele Fre-
quency Net Database to estimate their worldwide allelic frequencies.
For DQ, we retrieved haplotype frequency data in the same way as
for DP, keeping only a subset of 138 molecules known to form stable
heterodimers (25, 36). In terms of the number of molecules with
peptide coverage, the method covered 24 DQ molecules and 41
DR molecules. From the reference sets of DR and DQ molecules,
105 of 123 DR and 112 of 138 DQ molecules had a distance of at
most 0.05 to the molecules with peptide coverage. These molecules
corresponded to a population coverage of ~99% for both loci, indi-
cating that the method has nearly full coverage of HLA class II.

To illustrate the overall HLA class II specificity space, we con-
structed a specificity tree combining HLA-DR, HLA-DP, and
HLA-DQ molecules. The lists of molecules per locus used in the
population coverage analysis were reduced on the basis of similarity
between pseudo-sequences using the Hobohm 1 algorithm (for
details refer to Materials and Methods) (44), yielding 53 DR mole-
cules, 40 DP molecules, and 24 DQ molecules with unique specific-
ities. Then, the MHCCluster method was used to construct an
overall specificity tree for these molecules. The result of this is
shown in Fig. 7. Overall, the molecules in each locus are grouped
together in well-defined clusters. A few exceptions can be seen,
such as DRB4*01:01, which was positioned alone close to the DQ
branch, and DPA1*01:03-DPB1*271:01, which was clustered to-
gether with a set of DR molecules. The latter is likely due to this
DP molecule being noncovered by our method both in terms of
peptide coverage and pseudo-sequence distance.

NetMHCIIpan-4.3
The final prediction method, titled NetMHCIIpan-4.3, is available
as a webserver at https://services.healthtech.dtu.dk/service.php?
NetMHCIIpan-4.3. Predictions can be made for all MHC class II
molecules of known sequence. Furthermore, the method can also
include ligand context encoding. To reduce computational time,
the method by default only considers peptide inversion for HLA-
DP molecules. However, an option is included to consider inversion
for all molecules, which could be useful when e.g., predicting
binding toward molecules not characterized before.
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CD4+ epitope benchmark
As a final validation of NetMHCIIpan-4.3, we benchmarked its per-
formance in identification of CD4+ epitopes. Here, we compared
our method with MixMHC2pred-2.0 (28), a recent update to the
MixMHC2pred prediction algorithm, as well as NetMHCIIpan-
4.2. In short, we queried the Immune Epitope Database (45) for pos-
itive CD4+ T cell epitopes of length 12-21 with known HLA restric-
tion and source protein sequence. Then, for each entry of source
protein, epitope, and HLA, we extracted all peptides of the same
length as the epitope from the protein sequence, labeling the
epitope as positive and the remaining peptides as negatives. To min-
imize bias, all peptides that were found in the EL training data of
NetMHCIIpan-4.3 were removed. For more information on the
benchmark data, refer to Materials and Methods. Using each of
the included methods, we then predicted binding of each peptide
to its given HLA molecule and calculated an AUC per source
protein, epitope, and HLA entry. The benchmark result is illustrated
in Fig. 8, showing that NetMHCIIpan-4.3 significantly outperforms
MixMHC2pred-2.0 and NetMHCIIpan-4.2 (N = 842, P = 0.007 and
P = 0.031, one-tailed binomial tests without ties).

DISCUSSION
Accurate prediction of antigen presentation for HLA class II is
crucial for our understanding of the molecular mechanisms under-
lying the adaptive immune system. In recent years, the generation of
large datasets of HLA ligands identified through MS in conjunction
with powerful machine learning methods being developed has
allowed researchers to make tremendous progress in improving
the predictive accuracy for HLA class II. However, until now,
most methods have been mainly focused on HLA-DR because of
a lack of available high-quality data for especially HLA-DP. Here,
we have presented NetMHCIIpan-4.3, which accurately predicts
antigen presentation across the entire HLA class II specificity
space. This was achieved by integrating high-quality immunopepti-
domics datasets for HLA-DP, along with previous datasets describ-
ing the specificities of DR and DQ.

Our method was shown to achieve high and comparable perfor-
mance across all HLA class II loci. Furthermore, the ability to
perform accurate motif identification was improved by taking
into account the inverted peptide binding mode, which was
found to be restricted to a small set of DP molecules primarily
defined by HLA-DPA1, in agreement with previous findings. By in-
tegrating additional datasets for rationally selected DP molecules,
the method’s coverage of DP was extended even further, illustrating

the importance of targeted immunopeptidomics assays for generat-
ing information-rich high-quality training data. NetMHCIIpan-4.3
was demonstrated to have a population coverage exceeding 96% for
all three HLA class II loci based on haplotype frequencies obtained
from the Allele Frequency Net Database. In relation to this coverage,
one must be aware that the haplotype frequency data used to calcu-
late the population coverage may be affected by a lack of available
frequency data for all molecules in a wide range of demographics.

Investigating the pairing of HLA-DPA1 and HLA-DPB1 chains,
we found that the β chain was the main determinant of HLA-DP
specificities, meaning that most HLA-DP molecules with identical
β chain share similar binding motifs, whereas this was not the case
for molecules with identical α chain. Furthermore, studying the
contribution of individual HLA-DP molecules to the immunopep-
tidome of heterozygous cell lines revealed that certain DP mole-
cules, such as DPA1*02:01-DPB1*04:01 and DPA1*02:02-
DPB1*04:01, share a limited contribution to the immunopeptidome
of the given cell lines, suggesting that they might be either poorly
functional or have low surface expression. The rs9277534A/G poly-
morphism at HLA-DPB1 30 untranslated region (30UTR) has been
associated with transcriptional and cell surface HLA-DPB1 expres-
sion in different antigen-presenting cells including B cells. HLA-
DPB1 surface expression is substantially higher in cells homozygous
for rs9277534-G compared to those homozygous for rs9277534-A.
The following DPB1 alleles (02:01, 02:02, 04:01, 04:02, and 17:01)
have been reported to have rs9277534A at 30UTR, which is correlat-
ed with reduced surface expression and is potentially one of the
sources for the limited contribution of these two DP molecules to
the class II immunopeptidome of the cells (46–48).

However, this cannot fully explain our observation, as in this
study, we see high peptide counts toward molecules such as HLA-
DPA1*02:01-DPB1*17:01 and HLA-DPA1*01:03-DPB1*04:01, un-
derlining that the β chain is not the only factor that determines the
level of contribution of an HLA-DP molecule to the immunopepti-
dome. In the DP heterodimer, positions 85 to 87 of the β chain, as
well as the position 31 of the α chain, participate in the formation of
the P1 pocket (49) of the peptide-binding region, emphasizing that
both α and β chains play a critical role in antigen presentation.

Despite the high number of possible DPA1-DPB1 heterodimers,
only a few HLA-DP haplotypes are dominant within most popula-
tions, suggesting a potential linkage disequilibrium (LD) between
certain DPA1 and DPB1 alleles (50). DPB1 alleles are clustered
into two groups on the basis of whether they carry GPM
(DPB1*04:01, 02:01, and 04:02) or EAV (DPB1*01:01, 03:01, and
05:01) at positions 85 to 87. On the other hand, a single amino
acid polymorphism at position 31 [methionine (M) or glutamine
(Q)] divides DPA1 alleles into two groups, each of which can
form a heterodimer with a DPB1 allele. The most frequent DPA1
alleles, DPA1*01:03, 02:01, and 02:02, contain M, Q, and Q at posi-
tion 31, respectively.

When DPA1-DPB1 haplotypes are examined, a near-complete
LD is observed between DPA1 alleles with 31Q (DPA1*02:01 and
02:02) and DPB1 alleles with the EAV sequence, while
DPA1*01:03 (31M) is nearly always detected on a haplotype with
DPB1 alleles carrying a GPM sequence (50). Although these rules
are not as strict as the rules defined for DQ α and DQ β dimerization
and certain exceptions have been observed among DP haplotypes,
they can restrict the possibility of formation of all potential DPA1-
DPB1 heterodimers. This may explain the distinct pattern of

Table 1. List of HLA-DQ α and β chains that pair to form stable
heterodimers. Any α chain in a given row can pair with any β chain in the
same row and vice versa (25, 36).

α Chain β Chain

DQA1*01 DQB1*05
DQB1*06

DQA1*02
DQA1*03
DQA1*04
DQA1*05
DQA1*06

DQB1*02
DQB1*03
DQB1*04
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Fig. 7. Combined specificity tree for HLA-DR, HLA-DP, and HLA-DQ. Orange molecules have peptide coverage corresponding to at least 50 high-confidence ligands,
and blue molecules have a pseudo-sequence distance of at most 0.05 to an orange molecule. Logos in red frames correspond to noncovered molecules.
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haplotype frequency observed for this locus, where a small number
of DP haplotypes, as few as 15, account for over 80% of cumulative
frequency in different populations (51) and is consistent with the
idea that particular DP α and β chain combinations may not form
a structurally stable heterodimer.

While the HLA-DPA1*02:01-DPB1*17:01 and HLA-
DPA1*01:03-DPB1*04:01 molecules both follow this rule, which
is in line with their high peptide counts, DPA1*02:01-
DPB1*04:01 and DPA1*02:02-DPB1*04:01 molecules are both ex-
ceptions, where a DPA1 allele with Q at position 31 has formed a
heterodimer with a DPB1 allele bearing GPM sequence at positions
85 to 87. Therefore, less stability of the heterodimer along with pos-
sibly low cell surface expression as described earlier might be the
reasons why these molecules have a limited role in antigen presen-
tation and contribution to the class II immunopeptidome. Further
investigation, for instance, by analysis of immunopeptidome pro-
files in selected DP heterozygous cell lines is required to assess
this and fully define rules associating HLA-DP α and β chain
pairing with immunopeptidome contribution.

Last, the tool was benchmarked against a set of earlier developed
tools in the context of prediction of known CD4+ epitopes as ob-
tained from the IEDB and was demonstrated to achieve superior
performance. It is important to underline that this benchmark is
highly biased toward HLA-DR, and hence likely does not fully
reflect the performance difference between the different methods
that are expected to be most pronounced for DP (and DQ when
compared to MixMHC2pred-2.0). Furthermore, we were able to
confirm our previous findings regarding the contribution of
DRB3, 4, and 5 (24), as well as cis– and trans–HLA-DQ hetero-
dimers in shaping the class II immunopeptidome (25).

In summary, these results highlight the successful integration of
high-quality MS EL data generated with loci-specific antibodies.
This integration has effectively narrowed the performance gap
between HLA-DP (and HLA-DQ) and HLA-DR, leading to

enhanced motif characterizations across all three HLA class II
loci. As a result, we can now assert that the specificity puzzle of
HLA class II molecules has been fully resolved. These findings
and the NetMHCIIpan-4.3 tool are expected to serve as a means
to broaden our understanding of the molecular role of HLA class
II in the initiation of cellular immunity in the context of infectious
and autoimmune diseases beyond that of HLA-DR.

MATERIALS AND METHODS
Cell lines and antibody
A group of three homozygous B lymphoblastoid cell lines (BLCL)
expressing low-frequency HLA-DP alleles were selected for genera-
tion of MS-immunopeptidomics data to further extend the coverage
of the HLA-DP specificity tree. IHW09063 (DPA1*01:03-
DPB1*16:01) and IHW09066 (DPA1*02:02-DPB1*02:02) were ob-
tained from the International Histocompatibility Working Group
Cell and DNA bank housed at the Fred Hutchinson Cancer Re-
search Center, Seattle, WA (www.ihwg.org). IHW09208
(DPA1*02:01-DPB1*04:01) was a gift from J. Gumperz (University
of Wisconsin-Madison). The Hybridoma for HLA-DP–specific
monoclonal antibody (clone B7/21) was a gift from T. Purcell
(Monash University). The anti-human HLA-DP monoclonal anti-
body was produced in house from the hybridoma cell line and used
for affinity purification of total HLA-DP from the BLCLs.

The cells were grown in high-density cultures in roller bottles in
complete RPMI medium (Gibco) supplemented with 15% fetal
bovine serum (Gibco/Invitrogen Corp) and 1% 100 mM sodium py-
ruvate (Gibco). Cells were harvested from the suspension, washed
with phosphate-buffered saline, and spun down at 4°C for 10
min. The cell pellets were immediately frozen in LN2 and stored
at −80°C until downstream processing. The cell lines were subjected
to high-resolution HLA typing (HLA-A, HLA-B, HLA-C; DRB1, 3,
4, and 5; DP; and DQ) before large-scale culture and data collection
for authentication.

Isolation and purification of HLA-DP–bound peptides
HLA-DP molecules were purified from the cells by affinity chroma-
tography using the anti-human HLA-DP–specific antibody (clone
B7/21). Immunoaffinity columns were generated by coupling 1.5
mg of the purified antibody to 1 ml of matrix (CNBr-activated Se-
pharose 4 Fast Flow, Amersham Pharmacia Biotech, Orsay, France).
Frozen cell pellets were pulverized using Retsch Mixer Mill MM400;
resuspended in lysis buffer composed of tris (pH 8.0; 50 mM),
IGEPAL 0.5%, NaCl (150 mM), and cOmplete protease inhibitor
cocktail (Roche, Mannheim, Germany); and incubated at 4°C for
1 hour on a rotary shaker. Lysates were centrifuged in an Optima
XPN-80 ultracentrifuge (Beckman Coulter, IN, USA) at 4°C for
90 min (200,000g). Cleared supernatants were filtered using a
0.45-μm filter and loaded on immunoaffinity columns overnight
at 4°C. Columns were washed sequentially with 10 column
volumes of wash buffers at pH:8.0 and were eluted with 0.2 M
acetic acid. The HLA was denatured, and the peptides were isolated
by adding glacial acetic acid (up to 10%) and heat (76°C for 10 min).
The mixture of peptides and HLA-DP was subjected to reverse-
phase high-performance liquid chromatography (RP-HPLC).

Fig. 8. CD4+ epitope benchmark. Each point is the AUC performance for an
epitope, source protein, HLA combination. Results of one-tailed binomial tests
without ties are shown, with arrowheads indicating the direction of the test (N =
842; *P < 0.05 and **P < 0.01).
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Fractionation of the HLA/peptide mixture by RP-HPLC
RP-HPLC was used to reduce the complexity of the peptide mixture
eluted from the affinity column. First, the eluate was dried under
vacuum using a CentriVap concentrator (Labconco, Kansas City,
MO, USA). The solid residue was dissolved in 10% acetic acid
and fractionated over a 150-mm-long Gemini C18 column, with
pore size of 110 Å and particle size of 5 μm (Phenomenex, Torrance,
CA, USA), using a Shimadzu Nexera instrument (Shimadzu Scien-
tific Instruments, Pittsburg, PA, USA). An acetonitrile (ACN) gra-
dient was run at pH 2 using a two-solvent system. Solvent A
contained 2% ACN in water, and solvent B contained 5% water in
ACN. Both solvent A and solvent B contained 0.1% trifluoroacetic
acid. The column was preequilibrated at 2% solvent B. The sample
was loaded on the column in a period of 18 min using a solvent
system composed of 2% solvent B. Then, a two-segment gradient
was run at a flow rate of 160 μl/min: four to 40% solvent B for 40
min, followed by 40 to 80% solvent B for 8 min (24). Fractions were
collected in 2-min intervals using a Gilson FC 203B fraction collec-
tor (Gilson, Middleton, Wi, USA), and the ultraviolet absorption
profile of the eluate was recorded at 215-nm wavelength.

Nano–LC-MS/MS analysis
Peptide-containing HPLC fractions were dried and resuspended in
a solvent composed of 10% acetic acid, 2% ACN, and iRT peptides
(Biognosys, Schlieren, Switzerland) as internal standards. Fractions
were applied individually to an Eksigent nanoLC 415 nanoscale RP-
HPLC (AB Sciex, Framingham, MA, USA), including a 5-mm-long,
350–μm–internal diameter ChromXP C18 trap column with 3-μm
particles and 120-Å pores and a 15-cm-long ChromXP C18 separa-
tion column (internal diameter, 75 μm) packed with the same
medium (AB Sciex, Framingham, MA, USA). An ACN gradient
was run at pH 2.5 using a two-solvent system. Solvent A was 0.1%
formic acid in water, and solvent B was 0.1% formic acid in 95%
ACN in water. The column was preequilibrated at 2% solvent
B. Samples were loaded at a flow rate of 5 μl/min onto the trap
column and run through the separation column at 300 nl/min
with two linear gradients: ten to 40% B for 70 min, followed by
40 to 80% B for 7 min.

The column effluent was ionized using the NanoSpray III ion
source of an AB Sciex TripleTOF 5600 quadruple time-of-flight
mass spectrometer (AB Sciex, Framingham, MA, USA) with the
source voltage set to 2400 V. Information-dependent analysis of
peptide ions was acquired on the basis of a survey scan in the
TOF-MS positive-ion mode over a range of 300 to 1250 mass/
charge ratio (m/z) for 0.25 s. Following each survey scan, up to 22
ions with a charge state of 2 to 5 and intensity of at least 200 counts
per second were subjected to collision-induced dissociation for MS/
MS over a maximum period of 3.3 s. Selection of a particular ion m/
z was excluded for 30 s after three initial MS/MS experiments.
Dynamic collision energy was used to automatically adjust the col-
lision voltage based on ion size and charge. PeakView Software
version 1.2.0.3 (AB Sciex, Framingham, MA, USA) was used for
data visualization.

Peptide data analysis
Peptide sequences were identified using PEAKS Studio 11 software
(Bioinformatics Solutions, Waterloo, Canada) at a precursor mass
error tolerance of 30 ppm and a fragment mass error tolerance of
0.02 Da. A database composed of Swiss-Prot Homo sapiens (taxon

identifier 9606) and iRT peptide sequences was used as the refer-
ence for database search. Variable posttranslational modifications
including acetylation, deamidation, pyroglutamate formation, oxi-
dation, sodium adducts, phosphorylation, and cysteinylation were
included in database search. Identified peptides were further filtered
at a peptide false discovery rate of 1% using PEAKS decoy-fusion
algorithm.

Training data
We started out by collecting binding affinity and EL datasets from
previous publications, including the training data for NetMHCII-
pan-4.2 (25), NetBoLAIIpan-1.0 (35), and additional HLA-DR
peptide ligands from Kaabinejadian et al. (24), as well as a small
set of additional unpublished BoLA EL data (provided by
S. Wilkowsky; sample id: HFX231_IPP_RP_BBOVIS). These data
were combined with DP EL data from van Balen et al. and related
studies (32–34) consisting of 34 samples covering a total of 19 DP
molecules. Of these 34 datasets, 30 are SA datasets and 4 are MA
datasets.

In addition, we included immunopeptidomics data made specif-
ically for this study, which was generated from three different cell
lines (IHW09063, IHW09066, and IHW09208). For the
IHW09063 cell line, we also included sets of DR and DQ affinity-
purified peptides identified with PEAKS Studio 11 from the same
samples used by Nilsson et al. (25) and Kaabinejadian et al. (24).
These peptide sets were used instead of the previous peptide sets
identified in the aforementioned publications.

Aside from the datasets from the works of Nilsson et al. and
Fisch et al. (25, 35), which were already preprocessed, all datasets
were filtered as described earlier to exclude possible contaminant
peptides and MHC class I binders, resulting in peptides of length
12-21 (24). These peptides were then mapped against the human
(or cattle in the case of the BoLA data) proteome to define source
protein context. Here, around 2.3% of peptides with no reference
match were discarded. The EL data were then enriched with
random natural peptides assigned as negatives. This enrichment
was done in a per–sample id manner by uniformly sampling 12-
21 mer peptides, such that the amount of negatives was equal to
five times the number of peptides for the most prevalent peptide
length in the given sample.

The final EL dataset includes a total of 675,364 positive and
6,886,973 negative peptides from a total of 237 EL samples, covering
a total of 142 MHC class II molecules. Furthermore, the binding
affinity data consists of 129,110 data points covering 80 class II mol-
ecules. An overview of all the datasets used in the study in terms of
peptide counts, HLA types, dataset type (BA and EL) and process-
ing method (preprocessed or filtered) are provided in table S1. The
complete dataset was partitioned into five subsets for use in cross-
validation using the common-motif approach, such that peptides
with a subsequence overlap of nine or more amino acids were
placed in the same partition (52).

Training of prediction models using NNAlign_MA
To accommodate the DP data from van Balen et al. (32–34)
containing inverted binders, we developed an extension of the
NNAlign_MA method that includes an option to consider
peptide inversion during training and prediction. With this
option, inverted binding can be predicted by reversing the
peptide sequence and its encoding in the network input layer.
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Furthermore, the peptide binding mode is encoded in the input
layer with either 0 or 1 for forward and inverted binding,
respectively.

When training with inversion, we apply an initial burn-in period
of two epochs in which no peptides are inverted, after which inver-
sion is considered in the remaining epochs. At the beginning of each
epoch with inversion allowed, the optimal binding mode (forward
versus inverted) is assigned to each peptide by selecting the mode
that yields the highest prediction score from the network. After-
ward, the annotated binding modes are used in the backpropaga-
tion. When making predictions with the trained network
ensembles, each peptide’s inversion state (inverted or noninverted)
is reported as the majority vote between the networks. In case of ties,
the noninverted mode is reported.

Each trained method is an ensemble consisting of 100 models
corresponding to two different architectures with either 100 or
120 neurons in the single hidden layer, five different cross-valida-
tion folds, and 10 random initializations. All models were trained
with stochastic gradient descent using backpropagation. Further-
more, each training was performed for 300 epochs without early
stopping using a learning rate of 0.05. The training included a
burn-in period of 20 epochs in which only SA data were used to
update the model parameters. The remaining epochs included
both SA and MA data. Furthermore, a P1 burn-in period was
used, in which only peptides with one of the following amino
acids in the first position of their binding core are considered:
ILVMFYWRK. This P1 alphabet was extended with R and K com-
pared to that in the original NNAlign_MA method to accommodate
the P1 anchor amino acid preference in some DP binding motifs.
For the models trained without peptide inversion, a standard P1
burn-in of two epochs was used. On the other hand, in the
models trained with inversion, the P1 burn-in was extended to
four epochs for the method to learn the P1 amino acid preferences
for both forward and inverted peptide binders.

Initially, we trained three prediction methods to investigate the
impact of the DP data from van Balen and colleagues (32–34) on
predictive performance. Here, one method was trained without
these data and without inversion, and two models were trained in-
cluding the data, either without or with using peptide inversion. An
additional method, entitled NetMHCIIpan-4.3, was trained with in-
version including the DP data generated for this study in the train-
ing. Furthermore, this final model was also trained with peptide
context. Here, peptide context is defined as three residues flanking
the peptide’s N and C termini within the source protein, as well as
the first three residues from the peptide’s N and C termini, respec-
tively, all concatenated into a 12-mer amino acid sequence (40).

Performance evaluation
Performance was evaluated using cross-validation by concatenating
the five EL cross-validation prediction folds for each method and
then calculating the performance on a per–HLA molecule or per–
sample id basis. For the per-molecule evaluation, only HLA mole-
cules with at least 25 positive peptides in all methods were included,
this to ensure a level of certainty in the calculated metrics. The
cross-validation performance was then evaluated in terms of
AUC, AUC 0.1, and PPV. Here, PPV is defined as the number of
true positives in the top N predictions for a given sample, where
N is the total number of positives for the given sample.

Correspondence between motifs
To assess the similarity between sequence motifs, we used PSFMs to
represent a given set of peptide binding cores. Then, each PSFM was
represented as a single vector by concatenating each of the nine po-
sitions’ vectors with 20 values. A symmetric KLD between two
vectors a and b was then calculated using the following formula

KLDa;b ¼
XN

i
ai � ln

ai

bi

� �� �

þ bi � ln
bi

ai

� �� �� �

ð1Þ

Here, only positions where each vector’s value was greater than 0
were included to avoid division by 0.

Pseudo-sequence distance metric
Distances between HLA class II molecules were estimated using the
following relation

d ¼ 1 �
sðA;BÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðA;AÞ � sðB;BÞ

p ð2Þ

where s(X,Y ) is the summed BLOSUM50 similarity between mole-
cules X and Y in terms of their pseudo-sequences (53). Here, the
pseudo-sequence refers to a set of 34 polymorphic residues in the
HLA sequence (15 from the α chain and 19 from the β chain) con-
catenated into a single sequence (39).

Allelic and haplotype frequencies
For DR, a reference set of 123 molecules was defined by considering
DRB molecules with full-length sequence data as obtained from the
IPD-IMGT/HLA database (retrieved April 2022) (43), filtered to
only keep molecules with unique HLA pseudo-sequences (39).
For pseudo-sequences mapping to multiple molecules, the molecule
with the lowest second-field number in the allele name (e.g.,
DRB1*09:01) was chosen. On the basis of this list, worldwide
allelic frequencies were estimated by querying the Allele Frequency
Net Database (37). In short, frequencies were obtained for each
HLA-DR allele from an average over worldwide populations of
size 100 and above, weighted by population size capped at the
maximum values of 10,000.

For each of the DP and DQ loci, we retrieved high-resolution
haplotype frequency data from the Allele Frequency Net Database,
in populations of size 100 and above. For HLA-DQ, only haplotypes
corresponding to known stable DQ heterodimers (listed in Table 1)
were included (36). Next, capping the maximum population size at
1000, we calculated the weighted average haplotype frequencies on
the basis of the population sizes. This resulted in lists of 167 DP and
138 DQ haplotypes.

Specificity trees
Each specificity tree was based on predictions for a set of 100,000
random 13-17 mer peptides, which were done for each included
molecule. For the given set of molecules to include in the tree, the
top 1% of random peptides in terms of prediction score was re-
trieved for each molecule. Then, the union of these top 1%
peptide sets was used for the specificity tree calculation using the
MHCCluster method (38). The method builds a set of 100 distance
matrices using bootstrapping, each calculated by pairwise correla-
tions between the prediction scores for each pair of molecules,
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and summarizes these matrices into a consensus tree. All trees were
drawn using the Iroki tree viewer (54).

For the HLA-DP specificity trees, the set of DP haplotype mol-
ecules was reduced to a list of molecules with unique pseudo-se-
quences. Then, each pseudo-sequence was mapped to a molecule
name matching that sequence. By default, any DP molecule in the
DP data from the work of van Balen and colleagues (32–34) was
used to represent a given pseudo-sequence; otherwise, the name
of the molecule with the highest haplotype frequency among the
possible candidates was chosen. This resulted in a set of 96 DP mol-
ecules, which were included in the DP specificity trees.

For the final HLA-II specificity tree, the sets of DR, DP, and DQ
molecules were first sorted individually by their haplotype (or allelic
in the case of DR) frequencies in descending order. Then, the
Hobohm 1 algorithm (44) was used to reduce each reference list
to a shorter list of molecules. The algorithm goes through the list
of sequences and keeps track of a list of “unique” sequences, and
only adds a new sequence to this list if it is not similar to any of
the current sequences in the list. Here, a pseudo-sequence similarity
threshold of 0.95 was used, meaning that any pseudo-sequence that
had a pseudo-sequence distance of less than 0.05 to any sequence in
the unique list was discarded. By sorting the initial lists on the basis
of frequencies, the most frequent molecules are placed at the top
and are thus more likely to appear in the final reduced lists. This
resulted in sets of 53 DR, 40 DP, and 26 DQ molecules, which
were included in the overall HLA-II specificity tree.

CD4+ epitope benchmark
We queried the Immune Epitope Database (45) for positive CD4+ T
cell epitopes of length 12-21 without posttranslational modifica-
tions and with full four-digit HLA typing. Here, only epitope,
HLA pairs with at least three positive assays were included. Further-
more, only epitopes with known source protein ID and which were
not found in a negative assay were considered. The source proteins
from which negative peptides were generated were downloaded
from the UniProt database (55). For each {epitope, allele, protein}
combination in which the epitope could be mapped to the protein
sequence, all overlapping peptides with the same length as the
epitope were extracted from the protein sequence, and all peptides
beside the epitope were labeled as negatives. One combination was
discarded, as its allele (DRB1*07:03) was not supported by
MixMHC2pred. Furthermore, all peptides that were found in the
EL training data of NetMHCIIpan-4.3 were not included in the
evaluation. The final benchmark dataset consisted of 842
{epitope, allele, protein} combinations covering 40 HLA-DR, 13
HLA-DQ, and 4 HLA-DP molecules. As the positive epitopes are
usually tested for T cell response individually, the peptide context
information is not relevant in this benchmark, and, therefore, all
methods were run without inclusion of peptide context encoding.

Data visualization
Data visualizations in the manuscript figures were created in Python
3.10.0 using the Matplotlib (version 3.7.2) and seaborn (version
0.12.2) libraries. Sequence logos were generated with Seq2Logo-
2.0 (56).

Statistical analysis
All statistical tests were made in Python 3.10.0 using the SciPy
library (version 1.11.1), applying a standard significance level of

0.05 in each test. In the cross-validation and benchmark perfor-
mance evaluation, one-tailed binomial tests were applied. In these
tests, the alternative hypothesis is that one method is more likely to
have better performance on a given dataset/molecule than the
other method.

Supplementary Materials
This PDF file includes:
Figs. S1 to S10
Legend for table S1

Other Supplementary Material for this
manuscript includes the following:
Table S1
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